CBSE Class 12 Physics Question Paper 2020 Set 5) /5/1

Series : HMJ/5	$\mathbf{SET} - 1$					
रोल नं. Roll No.	कोड नं. 55/5/: Code No. परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ट पर अवश्य लिखें। Candidates must write the Code on the title page of the answer-book.					
नोट (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।	NOTE (I) Please check that this question paper contains 23 printed pages.					
(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें। (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate (III) Please check that this question paper contains 37 questions.					
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।	(IV) Please write down the Seria Number of the question in the answer-book before attempting it.					
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे ।	1					
भौतिक विज्ञा	- न (सैद्धान्तिक)					
PHYSICS (Theory)						

.55/5/1.

निर्धारित समय: 3 घण्टे

 $Time\ allowed: 3\ hours$

309A

1

P.T.O.

अधिकतम अंक : 70

Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए:

- (i) प्रश्न-पत्र **चार** खंडों में विभाजित किया गया है क, ख, ग एवं घ।
- (ii) प्रश्न-पत्र में 37 प्रश्न है। **सभी** प्रश्न अनिवार्य हैं।
- (iii) खण्ड-क में प्रश्न संख्या 1 से 20 तक अति लघुत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड-ख** में प्रश्न संख्या 21 से 27 तक लघुउत्तरीय प्रश्न हैं। प्रत्येक प्रश्न 2 अंक का है।
- (v) **खण्ड-ग** में प्रश्न संख्या 28 से 34 तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंक का है।
- (vi) **खण्ड-घ** में प्रश्न संख्या 35 से 37 तक भी दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंक का है।
- (vii) कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के दो प्रश्नों में, दो-दो अंकों के दो प्रश्नों में, तीन-तीन अंकों के एक प्रश्न में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
- (viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (ix) केलकुलेटर अथवा लॉग टेबल के प्रयोग की अनुमित नहीं है।
- (x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

 $h = 6.63 \times 10^{-34} \text{ Js}$

$$e = 1.6 \times 10^{-19} C$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12}~\mathrm{C^2~N^{-1}~m^{-2}}$$

$$\frac{1}{4\pi\epsilon_0} = 9\times 10^9~N~m^2~C^{-2}$$

इलेक्ट्रॉन का द्रव्यमान $(m_e) = 9.1 \times 10^{-31} \text{ kg}$

न्यूट्रॉन का द्रव्यमान = $1.675 \times 10^{-27} \text{ kg}$

प्रोटॉन का द्रव्यमान = $1.673 \times 10^{-27} \text{ kg}$

आवोगाद्रो संख्या = 6.023×10^{23} प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक = $1.38 \times 10^{-23} \ \mathrm{JK^{-1}}$

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises four sections A, B, C and D.
- (ii) There are 37 questions in the question paper. All questions are compulsory.
- (iii) Section A: Q. no. 1 to 20 are very short-answer type questions carrying 1 mark each.
- (iv) Section B: Q. no. 21 to 27 are short-answer type questions carrying 2 marks each.
- (v) Section C: Q. no. 28 to 34 are long-answer type questions carrying 3 marks each.
- (vi) Section D: Q. no. **35** to **37** are also long answer type questions carrying **5** marks each.
- (vii) There is no overall choice in the question paper. However, an internal choice has been provided in **two** questions of **one** mark, **two** questions of **two** marks, **one** question of **three** marks and all the **three** questions of **five** marks. You have to attempt **only one** of the choices in such questions.
- (viii) However, separate instructions are given with each section and question, wherever necessary.
- (ix) Use of calculators and log tables is not permitted.
- (x) You may use the following values of physical constants wherever necessary.

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = $1.675 \times 10^{-27} \text{ kg}$

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$

खण्ड:क

नोट: नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प को चुनिए:

ब्रूस्टर कोण θ और सघन माध्यम में प्रकाश की चाल v के बीच का संबंध है – 1.

(a) $v \tan \theta = c$ (b) $c \tan \theta = v$ (c) $v \sin \theta = c$

(d) $c \sin \theta = v$

1

फोटो डायोड का उपयोग किसके संसूचन के लिए किया जाता है ? 2.

(a) रेडियो तरंगें

(b) गामा किरणें

(c) अवरक्त किरणें

(d) प्रकाशिक सिगनल

1

किसी श्रेणी LCR a.c. परिपथ की वरणक्षमता तब अधिक होती है जब 3.

L बड़ा है तथा R बड़ा है ।

(b) L छोटा है तथा R छोटा है ।

 ${
m L}$ बड़ा है तथा ${
m R}$ छोटा है ।

(d) L = R

1

किसी आवेशित कण के रैखिक संवेग (p) का उसकी द-ब्राग्ली तरंगदैर्ध्य (λ) के साथ सही विचरण को 4. दर्शाने वाला ग्राफ है -

किसी LED द्वारा उत्सर्जित प्रकाश की तरंगदैर्ध्य तथा तीव्रता निर्भर करती है -5.

अग्रदिशिक बायस और अर्धचालक का ऊर्जा अन्तराल पर (a)

अर्धचालक का ऊर्जा अन्तराल और प्रतीप बायस पर (b)

केवल ऊर्जा अन्तराल पर (c)

केवल अग्रदिशिक बायस पर

1

1

SECTION: A

Note: Select the most appropriate option from those given below each question.

1. The relationship between Brewester angle ' θ ' and the speed of light 'v' in the denser medium is –

(a) $v \tan \theta = c$

(b) $c \tan \theta = v$

(c) $v \sin \theta = c$

(d) $c \sin \theta = v$

1

2. Photo diodes are used to detect

(a) radio waves

(b) gamma rays

(c) IR rays

(d) optical signals

1

3. The selectivity of a series LCR a.c. circuit is large, when

(a) L is large and R is large

(b) L is small and R is small

(c) L is large and R is small

(d) L = R

1

4. The graph showing the correct variation of linear momentum (p) of a charge particle with its de-Broglie wavelength (λ) is –

5. The wavelength and intensity of light emitted by a LED depend upon

- (a) forward bias and energy gap of the semiconductor
- (b) energy gap of the semiconductor and reverse bias
- (c) energy gap only

(d) forward bias only

1

1

(c)

कोई आवेशित कण विभवान्तर V से त्विरत होने के पश्चात् किसी एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है और त्रिज्या ${f r}$ के वृत्त में गमन करता है । यिद विभवान्तर V को दो गुना कर दिया जाए तो वृत्त की त्रिज्या हो जाएगी								
(a)	2r	(b)	$\sqrt{2} \; \mathrm{r}$	(c)	4r	(d)	$r/\sqrt{2}$	1
किसी	सी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत फ्लक्स किस पर निर्भर करता है ?							
(a)	(a) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता							
(b) नेट परिबद्ध आवेश, माध्यम की विद्युतशीलता तथा गाउसीय पृष्ठ का साइज़								
(c)	केवल नेट परिब	द्ध आवे	श					
(d)	केवल माध्यम व	ने विद्युत	ाशीलता					1
पर अ	गर आपतन करती है तो ${f A}$ और ${f B}$ से उत्सर्जित होने वाले इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जाओं का							
(a)	2:3	(b)	3:4	(c)	1:3	(d)	$\sqrt{3}:\sqrt{2}$	1
किसी	किसी श्रेणी LCR परिपथ का अनुनाद पर शक्ति गुणांक होगा							
(a)	1	(b)	शून्य	(c)	1/2	(d)	$1/\sqrt{2}$	1
किसी उभयावतल लेंस, जिसकी क्षमता P है, को ऊर्ध्वाधरत: दो सर्वसम समतलावतल लेंसों में विभाजित किया गया है। इसके प्रत्येक भाग की क्षमता होगी								
(a)	2P	(b)	P/2	(c)	P	(d)	$P/\sqrt{2}$	1
यथोि	चेत उत्तर से रिक्त र	ऱ्थान की	ो पूर्ति कीजिए।					
भौति	क राशि	का \$	${ m SI}$ मात्रक ${ m NC}^{-1}$	m है।				1
इस त	•					से संयं	जित किया गया है ।	1
	है औ त्रिज्य (a) (b) (c) (d) यदिः पर अनुप (a) किसी (a) किसी (a) किसी (a) अनुप (a) किसी (a) अनुप (a) अनुप (a) अनुप (a) अनुप् (a) अनुप (a) अ अनुप (a) अ अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अनुप (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) अ (a) (a) अ (a) (a) अ (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	है और त्रिज्या r के वृष्टित्रज्या हो जाएगी (a) 2r किसी बन्द गाउसीय पृष्टि (a) नेट परिबद्ध आवे (b) नेट परिबद्ध आवे (c) केवल नेट परिबद्ध आवे (d) केवल माध्यम वे यदि आवृत्ति v के फोटे पर आपतन करती है ते अनुपात होगा (a) 2:3 किसी श्रेणी LCR परिष् (a) 1 किसी उभयावतल लेंस, किया गया है। इसके प्र (a) 2P यथोचित उत्तर से रिक्त र भौतिक राशि असमान अनुप्रस्थ-कार्द्ध सार के अनुदिश निय	है और त्रिज्या r के वृत में गर त्रिज्या हो जाएगी (a) 2r (b) किसी बन्द गाउसीय पृष्ठ से गुजर (a) नेट परिबद्ध आवेश तथा (b) नेट परिबद्ध आवेश, माध्य (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युत यदि आवृत्ति v के फोटॉन दो ध पर आपतन करती है तो A अ अनुपात होगा (a) 2:3 (b) किसी श्रेणी LCR परिपथ का अ (a) 1 (b) किसी उभयावतल लेंस, जिसकी किया गया है। इसके प्रत्येक भ (a) 2P (b) यथोचित उत्तर से रिक्त स्थान की भौतिक राशि का ट क्षेत्रफल इस तार के अनुदिश नियत रहने	है और त्रिज्या r के वृत्त में गमन करता है । यह त्रिज्या हो जाएगी (a) $2r$ (b) $\sqrt{2}r$ किसी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत पर (a) नेट परिबद्ध आवेश तथा माध्यम की विद्युत (b) नेट परिबद्ध आवेश, माध्यम की विद्युतशील (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युतशीलता यदि आवृत्ति v के फोटॉन दो धात्विक पृष्ठों A अंपर आपतन करती है तो A और B से उत्सर्जित अनुपात होगा (a) $2:3$ (b) $3:4$ किसी श्रेणी LCR परिपथ का अनुनाद पर शक्ति (a) 1 (b) शून्य किसी उभयावतल लेंस, जिसकी क्षमता P है, के किया गया है । इसके प्रत्येक भाग की क्षमता होर्ग (a) $2P$ (b) $P/2$ यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए । भौतिक राशि का SI मात्रक NC^{-1} असमान अनुप्रस्थ —काट क्षेत्रफल के किसी कॉपर इस तार के अनुदिश नियत रहने वाली भौतिक राशि	है और त्रिज्या r के वृत्त में गमन करता है । यदि विभव त्रिज्या हो जाएगी (a) $2r$ (b) $\sqrt{2} r$ (c) किसी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत फ्लक्स वि (a) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता तथे (b) नेट परिबद्ध आवेश, माध्यम की विद्युतशीलता तथे (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युतशीलता यदि आवृत्ति v के फोटॉन दो धात्विक पृष्ठों A और B ि पर आपतन करती है तो A और B से उत्सर्जित होने व अनुपात होगा (a) $2:3$ (b) $3:4$ (c) किसी श्रेणी LCR परिपथ का अनुनाद पर शक्ति गुणांक (a) 1 (b) शून्य (c) किसी उभयावतल लेंस, जिसकी क्षमता P है, को ऊर्ध्वा किया गया है । इसके प्रत्येक भाग की क्षमता होगी (a) $2P$ (b) $P/2$ (c) यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए । भौतिक राशि का SI मात्रक $NC^{-1}m$ है । असमान अनुप्रस्थ−काट क्षेत्रफल के किसी कॉपर के तार इस तार के अनुदिश नियत रहने वाली भौतिक राशि	है और त्रिज्या \mathbf{r} के वृत्त में गमन करता है । यदि विभवान्तर \mathbf{V} को दो गुना त्रिज्या हो जाएगी (a) $2\mathbf{r}$ (b) $\sqrt{2}\mathbf{r}$ (c) $4\mathbf{r}$ िकसी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत फ्लक्स किस पर निर्भर करता है (a) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता तथा गाउसीय पृष्ठ का स (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युतशीलता तथा गाउसीय पृष्ठ का स (d) केवल माध्यम की विद्युतशीलता (d) केवल माध्यम की विद्युतशीलता (d) केवल माध्यम की विद्युतशीलता (e) यदि आवृत्ति v के फोटॉन दो धात्विक पृष्ठों \mathbf{A} और \mathbf{B} जिसकी देहली आवृत्ति पर आपतन करती है तो \mathbf{A} और \mathbf{B} से उत्सर्जित होने वाले इलेक्ट्रॉनों की अं अनुपात होगा (a) $2:3$ (b) $3:4$ (c) $1:3$ िकसी श्रेणी LCR परिपथ का अनुनाद पर शक्ति गुणांक होगा (a) 1 (b) शून्य (c) $1/2$ िकसी उभयावतल लेंस, जिसकी क्षमता \mathbf{P} है, को ऊर्ध्वाधरतः दो सर्वसम सम्पर्किया गया है । इसके प्रत्येक भाग की क्षमता होगी (a) $2\mathbf{P}$ (b) $\mathbf{P}/2$ (c) \mathbf{P} यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए । भौतिक राशि का $\mathbf{S}I$ मात्रक $\mathbf{N}C^{-1}\mathbf{m}$ है । असमान अनुप्रस्थ –काट क्षेत्रफल के किसी कॉपर के तार को किसी d.c. बैटरी इस तार के अनुदिश नियत रहने वाली भौतिक राशि है ।	है और त्रिज्या \mathbf{r} के वृत्त में गमन करता है । यदि विभवान्तर \mathbf{V} को दो गुना कर वि त्रिज्या हो जाएगी (a) $2\mathbf{r}$ (b) $\sqrt{2}\mathbf{r}$ (c) $4\mathbf{r}$ (d) (b) $\sqrt{2}\mathbf{r}$ (c) $4\mathbf{r}$ (d) (a) $2\mathbf{r}$ (b) $\sqrt{2}\mathbf{r}$ (c) $4\mathbf{r}$ (d) (b) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता (b) नेट परिबद्ध आवेश, माध्यम की विद्युतशीलता तथा गाउसीय पृष्ठ का साइज़ (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युतशीलता यदि आवृत्ति v के फोटॉन दो धात्विक पृष्ठों \mathbf{A} और \mathbf{B} जिसकी देहली आवृत्तियाँ क्रम पर आपतन करती है तो \mathbf{A} और \mathbf{B} से उत्सर्जित होने वाले इलेक्ट्रॉनों की अधिकतम् अनुपात होगा (a) $2:3$ (b) $3:4$ (c) $1:3$ (d) किसी श्रेणी \mathbf{LCR} परिपथ का अनुनाद पर शक्ति गुणांक होगा (a) 1 (b) शून्य (c) $1/2$ (d) किसी उभयावतल लेंस, जिसकी क्षमता \mathbf{P} है, को ऊर्ध्वांधरतः दो सर्वसम समतलावत किया गया है । इसके प्रत्येक भाग की क्षमता होगी (a) $2\mathbf{P}$ (b) $\mathbf{P}/2$ (c) \mathbf{P} (d) यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए । भौतिक राशि का \mathbf{SI} मात्रक $\mathbf{NC}^{-1}\mathbf{m}$ है । असमान अनुप्रस्थ-काट क्षेत्रफल के किसी कॉपर के तार को किसी $\mathbf{d.c.}$ बैटरी से संय इस तार के अनुदिश नियत रहने वाली भौतिक राशि है ।	है और त्रिज्या \mathbf{r} के वृत्त में गमन करता है । यदि विभवान्तर \mathbf{V} को दो गुना कर दिया जाए तो वृत्त की त्रिज्या हो जाएगी (a) $2\mathbf{r}$ (b) $\sqrt{2}\mathbf{r}$ (c) $4\mathbf{r}$ (d) $\mathbf{r}/\sqrt{2}$ किसी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत फ्लक्स किस पर निर्भर करता है ? (a) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता \mathbf{r} (b) नेट परिबद्ध आवेश, माध्यम की विद्युतशीलता \mathbf{r} या गाउसीय पृष्ठ का साइज (c) केवल नेट परिबद्ध आवेश (d) केवल माध्यम की विद्युतशीलता \mathbf{r} या गाउसीय पृष्ठ का साइज (d) केवल माध्यम की विद्युतशीलता \mathbf{r} या आपतन करती है तो \mathbf{A} और \mathbf{B} से उत्सर्जित होने वाले इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जाओं का अनुपात होगा (a) $2:3$ (b) $3:4$ (c) $1:3$ (d) $\sqrt{3}:\sqrt{2}$ किसी श्रेणी \mathbf{L} CR परिपथ का अनुनाद पर शक्ति गुणांक होगा (a) 1 (b) शून्य (c) $1/2$ (d) $1/\sqrt{2}$ किसी उभयावतल लेंस, जिसकी क्षमता \mathbf{P} है, को ऊर्ध्वाधरतः दो सर्वसम समतलावतल लेंसों में विभाजित किया गया है । इसके प्रत्येक भाग की क्षमता होगी (a) $2\mathbf{P}$ (b) $\mathbf{P}/2$ (c) \mathbf{P} (d) $\mathbf{P}/\sqrt{2}$ यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए । भौतिक राशि \mathbf{m} का $\mathbf{S}\mathbf{I}$ मात्रक $\mathbf{N}\mathbf{C}^{-1}\mathbf{m}$ है । $\mathbf{S}\mathbf{H}$ सार के अनुदिश नियत रहने वाली भौतिक राशि \mathbf{m} है है ।

6.	A charge particle after being accelerated through a potential difference 'V' enters in a uniform magnetic field and moves in a circle of radius r. If V is doubled, the radius of the circle will become						
	(a)	2r	(b)	$\sqrt{2} \; { m r}$			
	(c)	$4\mathrm{r}$	(d)	$\sqrt{2}$ r $r/\sqrt{2}$	1		
7.	The	electric flux through a closed Gaus	sian su	urface depends upon			
	(a)	(a) Net charge enclosed and permittivity of the medium					
	(b)	Net charge enclosed, permittivity Gaussian surface	of the	medium and the size of the			
	(c)	Net charge enclosed only					
	(d)	Permittivity of the medium only			1		
8.	thre	hotons of frequency v are incident eshold frequencies $v/2$ and $v/3$ respectic energy of electrons emitted from	ectivel	y, the ratio of the maximum			
	(a)	2:3	(b)	3:4			
	(c)	1:3	(d)	$\sqrt{3}:\sqrt{2}$	1		
9.	The	power factor of a series LCR circuit	t at res	sonance will be			
	(a)	1	(b)	0			
	(c)	1/2	(d)	$1/\sqrt{2}$	1		
10.	10. A biconcave lens of power P vertically splits into two identical concave parts. The power of each part will be						
	(a)	2P	(b)	P/2			
	(c)	P	(d)	$P/\sqrt{2}$	1		
Not	e:	Fill in the blanks with appropriate	e answ	er.			
11.	The	physical quantity having SI unit N	${ m C}^{-1}$ m	is	1		
12.		opper wire of non-uniform area of tery. The physical quantity which			1		
.55/8	5/1	7		P.T.	0		
.5076		HELD WILL MICHAEL MICH	KOLO PROCUMOLI PROCUMOLI PROCU	⊥ • ⊥ •	J .		

13.	किसी बिन्दु आवेश को किसी खोखले चालक गोले जिसकी भीतरी त्रिज्या 'r' तथा बाहरी त्रिज्या '2r' है		
	के केन्द्र पर रखा गया है। इस गोले के भीतरी पृष्ठ पर पृष्ठीय आवेश घनत्व और बाहरी पृष्ठ पर पृष्ठीय		
	आवेश घनत्व का अनुपात होगा	1	
14.	पदार्थों C, Si और Ge का गुणधर्म इनके चालक बैण्ड और संयोजकता बैण्ड के बीच ऊर्जा		
	अन्तराल पर निर्भर करता है।	1	
15.	किसी संधि डायोड की किसी प्रत्यावर्ती वोल्टता को की क्षमता इस तथ्य पर निर्भर करती है		
	कि वह केवल अग्रदिशिक बायस में होने पर ही धारा को प्रवाहित होने देता है।	1	
नोट :	नम्नलिखित के उत्तर दीजिए :		
16.	किसी चल कुण्डली गैल्वैनोमीटर की "धारा सुग्राहिता" की परिभाषा लिखिए।	1	
17.	धनात्मक X-अक्ष के अनुदिश संचरण करने वाली किसी विद्युत-चुम्बकीय तरंग, जिसका विद्युत क्षेत्र		
	Y-अक्ष के अनुदिश है, के क्षेत्र आरेख का चित्रण कीजिए।	1	
18.	यंग के द्विझिरी प्रयोग में (i) संपोषी और (ii) विनाशी व्यतिकरण के लिए पथान्तर की शर्त लिखिए।	1	
19.	किसी कुण्डली से प्रवाहित धारा में परिवर्तन की दर के साथ उसमें प्रेरित emf के विचरण को दर्शाने के		
	लिए ग्राफ खींचिए।	1	
अथवा			
	${ m emf}$ के शिखर मान ${ m E}_0$ तथा कोणीय आवृत्ति (ω) के किसी ${ m ac}$ स्नोत के सिरों से प्रेरक $({ m L})$, संधारित्र		
	(C) तथा प्रतिरोधक (R) का कोई श्रेणी संयोजन जुड़ा है। कोणीय आवृत्ति (ω) के साथ इस परिपथ की		
	प्रतिबाधा में विचरण को दर्शाने के लिए ग्राफ खींचिए।	1	
.55/5	5/1. 8		

13.	A point charge is placed at the centre of a hollow conducting sphere	of			
	internal radius 'r' and outer radius '2r'. The ratio of the surface charge	ge			
	density of the inner surface to that of the outer surface will be	1			
14.	The, a property of materials C, Si and Ge depends upon the	ne.			
11.	energy gap between their conduction and valence bands.	1			
	chergy gap between their contraction and valence bands.	_			
15.	The ability of a junction diode to an alternating voltage, is base	∍d			
	on the fact that it allows current to pass only when it is forward biased.	1			
Not	e: Answer the following:				
16.	Define the term 'current sensitivity' of a moving coil galvanometer.	1			
1 =					
17.	Depict the fields diagram of an electromagnetic wave propagating alor				
	positive X-axis with its electric field along Y-axis.	1			
18.	Write the conditions on path difference under which (i) constructive	ve			
	(ii) destructive interference occur in Young's double slit experiment.	1			
19.	Plot a graph showing variation of induced e.m.f. with the rate of change	of			
10.	current flowing through a coil.	1			
		1			
OR					
	A series combination of an inductor (L), capacitor (C) and a resistor (R)	is			
	connected across an ac source of emf of peak value \boldsymbol{E}_0 and angula	ar			
	frequency (w). Plot a graph to show variation of impedance of the circu	it			
	with angular frequency (ω).	1			
.55/5	5/1.	P.T.O.			
.5076	У ± 0 мар	1.1.0.			

20. +x दिशा के अनुदिश कोई इलेक्ट्रॉन गितमान है । यह इलेक्ट्रॉन आरेख में दर्शाए अनुसार -z दिशा में दिशिक किसी एकसमान चुम्बकीय क्षेत्र \overrightarrow{B} में प्रवेश करता है । इस क्षेत्र में प्रवेश करने पर इलेक्ट्रॉन के प्रक्षेप-पथ की आकृति खींचिए ।

अथवा

आरेख में दर्शाए अनुसार किसी धारावाही सीधे लम्बे तार AB के निकट कोई धारावाही वर्गाकार पाश MNOP रखा है। तार तथा पाश एक ही तल में स्थित हैं। यदि पाश तार की दिशा में कोई नेट बल F अनुभव करता है, तो पाश की भुजा 'NO' पर बल का परिमाण ज्ञात कीजिए।

1

1

 $\mathbf{2}$

 $\mathbf{2}$

खण्ड : ख

21. किसी एकसमान विद्युत क्षेत्र में रखे किसी विद्युत द्विध्रुव पर लगने वाले बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए। इस विद्युत क्षेत्र में द्विध्रुव के उस अभिविन्यास की पहचान कीजिए जिसमें यह स्थायी संतुलन प्राप्त कर लेता है।

अथवा

किसी dc बैटरी के सिरों से संयोजित किसी संधारित्र में भंडारित ऊर्जा के लिए व्यंजक प्राप्त कीजिए । इस प्रकार संधारित्र के ऊर्जा घनत्व की परिभाषा लिखिए ।

An electron moves along +x direction. It enters into a region of uniform magnetic field \overrightarrow{B} directed along -z direction as shown in fig. Draw the shape of trajectory followed by the electron after entering the field.

A square shaped current carrying loop MNOP is placed near a straight long current carrying wire AB as shown in the fig. The wire and the loop lie in the same plane. If the loop experiences a net force F towards the wire, find the magnitude of the force on the side 'NO' of the loop.

1

1

SECTION: B

Derive the expression for the torque acting on an electric dipole, when it is held in a uniform electric field. Identify the orientation of the dipole in the electric field, in which it attains a stable equilibrium.

 $\mathbf{2}$

OR

Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor.

2

P.T.O. .55/5/1.11

22. मुक्त आकाश में गामा किरणें और रेडियो तरंगें समान वेग से गमन करती हैं। उत्पत्ति और मुख्य अनुप्रयोगों के पदों में इन दोनों के बीच विभेदन कीजिए।

2

23. आरेख में दर्शाए अनुसार दो पोलरॉयड शीटों P_1 और P_2 से होकर किसी सोडियम लैम्प (S) का प्रकाश गुजरता है । (i) P_1 से पारगिमत होने पर तथा (ii) पोलरॉयड P_1 को प्रकाश के संचरण की दिशा के परित: घूर्णन कराने पर P_2 से पारगिमत प्रकाश की तीव्रता पर क्या प्रभाव पड़ेगा ? दो प्रकरणों में अपने उत्तरों की पृष्टि कीजिए ।

 $\mathbf{2}$

प्रकाश के तरंगाग्र की परिभाषा लिखिए । आरेख में दर्शाए अनुसार सघन माध्यम (1) से विरल माध्यम (2) में संचरण करता कोई समतल तरंगाग्र AB इन दोनों माध्यमों को पृथक् करने वाले पृष्ठ P_1P_2 पर आपतन करता है ।

हाइगेन के सिद्धान्त का उपयोग करते हुए द्वितीयक तरंगिका खींचिए तथा इस आरेख में अपवर्तित तरंगाग्र प्राप्त कीजिए।

 $\mathbf{2}$

24. बंधन-ऊर्जा प्रति न्यूक्लिऑन $7.6~{
m MeV}$ तथा द्रव्यमान संख्या $240~{
m an}$ कोई भारी नाभिक P दो नाभिकों Q और R जिनकी द्रव्यमान संख्या क्रमश: $110~{
m MR}$ $130~{
m ReV}$ जिनकी बंधन-ऊर्जा प्रति न्यूक्लिऑन क्रमश: $8.5~{
m MeV}$ और $8.4~{
m MeV}$ हैं में टूटता है । इस विखण्डन में मुक्त होने वाली ऊर्जा परिकलित कीजिए।

 $\mathbf{2}$

22. Gamma rays and radio waves travel with the same velocity in free space.

Distinguish between them in terms of their origin and the main application.

 $\mathbf{2}$

2

 $\mathbf{2}$

2

23. Light from a sodium lamp (S) passes through two polaroid sheets P_1 and P_2 as shown in fig. What will be the effect on the intensity of the light transmitted (i) by P_1 and (ii) by P_2 on rotating polaroid P_1 about the direction of propagation of light? Justify your answer in both cases.

Define the term 'wave front of light'. A plane wave front AB propagating from denser medium (1) into a rarer medium (2) is incident on the surface P_1P_2 separating the two media as shown in fig.

Using Huygen's principle, draw the secondary wavelets and obtain the refracted wave front in the diagram.

24. A heavy nucleus P of mass number 240 and binding energy 7.6 MeV per nucleon splits in to two nuclei Q and R of mass numbers 110, 130 and binding energy per nucleon 8.5 MeV and 8.4 MeV, respectively. Calculate the energy released in the fission.

.55/5/1. 13 P.T.O.

25. आरेख में फोटोइलेक्ट्रॉन के लिए निरोधी विभव (V_o) और $1/\lambda$ के बीच दो धातुओं A और B के लिए ग्राफ दर्शाया गया है, यहाँ λ आपितत प्रकाश की तरंगदैर्ध्य है ।

- (a) इस ग्राफ से प्लांक नियतांक का मान किस प्रकार निर्धारित किया जाता है ?
- (b) यदि प्रकाश स्रोत तथा धातु A के पृष्ठ के बीच की दूरी में वृद्धि कर दी जाए, तो इससे उत्सर्जित इलेक्ट्रॉनों के लिए निरोधी विभव किस प्रकार प्रभावित होगा ? अपने उत्तर की पृष्टि कीजिए।

2

 $\mathbf{2}$

3

3

3

- 26. हाइड्रोजन परमाणु के बोर मॉडल का उपयोग करके परिभ्रमण करते इलेक्ट्रॉन के चुम्बकीय आघूर्ण तथा कोणीय संवेग के बीच संबंध प्राप्त कीजिए।
- 27. किसी एकल झिरी विवर्तन प्रयोग में झिरी की चौड़ाई में वृद्धि की गयी है। केन्द्रीय चमकीले बैण्ड के (i) साइज़ तथा (ii) तीव्रता पर क्या प्रभाव पड़ेगा ? अपने उत्तरों की पृष्टि कीजिए।

खण्ड: ग

- 28. (a) किसी चालक के विद्युत प्रतिरोध और प्रतिरोधकता के बीच विभेदन कीजिए।
 - (b) किसी $\mathrm{d.c.}$ बैटरी के सिरों से धातु की दो छड़ें, जिनमें प्रत्येक की लम्बाई L , अनुप्रस्थ-काट क्षेत्रफल $\mathrm{A_1}$ और $\mathrm{A_2}$, प्रतिरोधकताएँ $\mathrm{\rho_1}$ और $\mathrm{\rho_2}$ हैं, पार्श्व में संयोजित हैं । इस संयोजन की प्रभावी संयोजकता के लिए व्यंजक प्राप्त कीजिए ।
- 29. हाइड्रोजन परमाणु की प्रथम उत्तेजित अवस्था में परिभ्रमण करते इलेक्ट्रॉन से संबद्ध दे-ब्रॉग्ली तरंगदैर्ध्य परिकलित कीजिए। हाइड्रोजन परमाणु की निम्नतम अवस्था ऊर्जा $-13.6 \; \mathrm{eV}$ है।
- 30. (a) किसी रेडियोएक्टिव पदार्थ के क्षयांक की परिभाषा लिखिए।
 - (b) α -क्षय होते किसी यूरेनियम परमाणु $^{238}_{92}$ U की अर्धायु 4.5×10^9 वर्ष है । $^{238}_{92}$ U के $10~{
 m g}$ नमूने की सिक्रयता परिकलित कीजिए ।

- (a) How is the value of Planck's constant determined from the graph?
- (b) If the distance between the light source and the surface of metal A is increased, how will the stopping potential for the electrons emitted from it be effected? Justify your answer.
- 26. Use Bohr's model of hydrogen atom to obtain the relationship between the angular momentum and the magnetic moment of the revolving electron.
- 27. In a single slit diffraction experiment, the width of the slit is increased. How will the (i) size and (ii) intensity of central bright band be affected? Justify your answer.

SECTION: C

- 28. (a) Differentiate between electrical resistance and resistivity of a conductor.
 - (b) Two metallic rods, each of length L, area of cross A_1 and A_2 , having resistivities ρ_1 and ρ_2 are connected in parallel across a d.c. battery. Obtain the expression for the effective resistivity of this combination.
- 29. Calculate the de-Broglie wavelength associated with the electron revolving in the first excited state of hydrogen atom. The ground state energy of the hydrogen atom is -13.6 eV.
- 30. (a) Define the term decay constant of a radioactive substance.
 - (b) The half life of $^{238}_{92}$ U undergoing α decay is 4.5×10^9 years. Calculate the activity of 10 g sample of $^{238}_{92}$ U.

2

2

 $\mathbf{2}$

3

3

31. सौर सेल किसे कहते हैं ? इसका V-I अभिलाक्षणिक खींचिए । इसकी क्रियाविधि की तीन प्रक्रियाओं की व्याख्या कीजिए ।

अथवा

किसी पूर्ण तरंग दिष्टकारी का परिपथ आरेख खींचिए । इसके निवेशी और निर्गत तरंगरूपों को दर्शाते हुए इसकी क्रियाविधि की व्याख्या कीजिए ।

- 32. किसी प्रकाशिक यंत्र में 100 D क्षमता के अभिदृश्यक लेंस तथा 50 D क्षमता के नेत्रिका लेंस का उपयोग किया गया है। जब ट्यूब की लम्बाई $25~\mathrm{cm}$ है, तब अंतिम प्रतिबिम्ब अनन्त पर बनता है।
 - (a) इस प्रकाशिक यंत्र को पहचानिए;
 - (b) इस यंत्र द्वारा उत्पन्न आवर्धन परिकलित कीजिए।

33. (a) दो बिन्दु आवेश q_1 और q_2 वायु में r_{12} दूरी पर स्थित हैं । इस निकाय की स्थिरविद्युत स्थितिज ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए ।

- (b) यदि इस निकाय पर कोई बाह्य विद्युत क्षेत्र (E) अनुप्रयुक्त किया जाए तो इस निकाय की कुल ऊर्जा के लिए व्यंजक लिखिए।
- 34. जब अभिलम्बवत कार्यरत किसी बाह्य चुम्बकीय क्षेत्र से किसी $10~\Omega$ प्रतिरोध और $10~{
 m cm}^2$ क्षेत्रफल के पाश को हटाया जाता है तो समय के साथ इस पाश में प्रेरित धारा के विचरण को ग्राफ में दर्शाया गया है।

ज्ञात कीजिए :

- (i) इस पाश से गुजरने वाला कुल आवेश
- (ii) इस पाश से गुजरने वाले चुंबकीय फ्लक्स में परिवर्तन
- (iii) अनुप्रयुक्त चुम्बकीय क्षेत्र का परिमाण

3

3

3

3

31. What is a solar cell? Draw its V-I characteristics. Explain the three processes involved in its working.

OR

Draw the circuit diagram of a full wave rectifier. Explain its working showing its input and output waveforms.

32. An optical instrument uses a lens of power 100 D for objective lens and 50 D for its eyepiece. When the tube length is kept at 25 cm. the final image is formed at infinity.

- (a) Identify the optical instrument
- (b) Calculate the magnification produced by the instrument.

33. (a) Two point charges q_1 and q_2 are kept at a distance of r_{12} in air. Deduce the expression for the electrostatic potential energy of this system.

(b) If an external electric field (E) is applied on the system, write the expression for the total energy of this system.

34. When a conducting loop of resistance 10 Ω and area 10 cm² is removed from an external magnetic field acting normally, the variation of induced current in the loop with time is shown in the figure.

Find the

- (i) total charge passed through the loop.
- (ii) change in magnetic flux through the loop.
- (iii) magnitude of the magnetic field applied.

3

3

3

3

- 35. (a) किसी दर्पण की फोकस दूरी की परिभाषा लिखिए। किरण आरेख की सहायता से किसी दर्पण की फोकस दूरी और वक्रता त्रिज्या के बीच संबंध प्राप्त कीजिए।
 - (b) $\sqrt{3}$ अपवर्तनांक के किसी काँच के प्रिज्म ABC के फलक AC पर अभिलम्बवत आपितत किसी प्रकाश किरण का निर्गत कोण (e) परिकलित कीजिए। यदि वायु के स्थान पर प्रकाश किरण प्रिज्म से 1.3 अपवर्तनांक के किसी द्रव में निर्गत करे, तो निर्गत कोण में क्या गुणात्मक परिवर्तन होगा ?

- (a) टेलीस्कोप की विभेदन क्षमता की परिभाषा लिखिए। निम्नलिखित में वृद्धि करने पर विभेदन क्षमता पर क्या प्रभाव पड़ेगा ?
 - (i) उपयोग किए गए प्रकाश की तरंगदैर्ध्य ।
 - (ii) अभिदृश्यक लेंस का व्यास ।अपने उत्तरों की पुष्टि कीजिए ।
- (b) कोई पर्दा किसी बिम्ब से 80 cm दूरी पर रखा है। किसी उत्तल लेंस को बिम्ब और पर्दे के बीच रखने पर लेंस की दो विभिन्न स्थितियों पर, जो एक दूसरे से 20 cm की दूरी पर हैं, बिम्ब का पर्दे पर प्रतिबिम्ब बनता है। लेंस की फोकस दूरी निर्धारित कीजिए।

SECTION: D

- 35. (a) Define the term 'focal length of a mirror'. With the help of a ray diagram, obtain the relation between its focal length and radius of curvature.
 - (b) Calculate the angle of emergence (e) of the ray of light incident normally on the face AC of a glass prism ABC of refractive index $\sqrt{3}$. How will the angle of emergence change qualitatively, if the ray of light emerges from the prism into a liquid of refractive index 1.3 instead of air?

5

- (a) Define the term 'resolving power of a telescople'. How will the resolving power be effected with the increase in
 - (i) Wavelength of light used.
 - (ii) Diameter of the objective lens.

Justify your answers.

(b) A screen is placed 80 cm from an object. The image of the object on the screen is formed by a convex lens placed between them at two different locations separated by a distance 20 cm. Determine the focal length of the lens.

- 36. (a) यह दर्शाइए कि कोई आदर्श प्रेरक किसी ac परिपथ में कोई शक्ति क्षय नहीं करता है।
 - (b) आरेख में 100~V के परिवर्ती आवृत्ति के स्रोत की आवृत्ति f के साथ किसी प्रेरक के प्रेरित प्रतिघात (X_I) में विचरण को दर्शाया गया है।

- (i) प्रेरक का स्वप्रेरकत्व परिकलित कीजिए।
- (ii) जब इस प्रेरक का उपयोग $300~{
 m s}^{-1}$ पर श्रेणी में अज्ञात मान के किसी संधारित्र तथा $10~\Omega$ के प्रतिरोधक के साथ किया जाता है तो परिपथ में अधिकतम शक्ति क्षय होता है। संधारित्र की धारिता परिकलित कीजिए।

5

अथवा

- (a) लम्बाई l के किसी चालक को किसी एकसमान चुम्बकीय क्षेत्र B के लम्बवत तल में उसके किसी एक सिरे के परित: नियत कोणीय चाल ω से घूर्णित कराया गया है । इस चालक के सिरों के बीच प्रेरित emf में (i) कोणीय चाल (ω) तथा (ii) चालक की लम्बाई (l) के साथ होने वाले विचरण को दर्शाने के लिए ग्राफ खींचिए ।
- (b) 1 cm और 20 cm त्रिज्या के दो संकेन्द्री वृत्ताकार पाश समाक्ष रखे हैं।
 - (i) इस व्यवस्था का अन्योन्य प्रेरकत्व ज्ञात कीजिए।
 - (ii) यदि बाहरी पाश से प्रवाहित धारा में 5 A/ms की दर से परिवर्तन किया जाए तो भीतरी पाश में प्रेरित emf ज्ञात कीजिए। यह मानिए कि भीतरी पाश पर चुम्बकीय क्षेत्र एकसमान है।

- 36. (a) Show that an ideal inductor does not dissipate power in an ac circuit.
 - (b) The variation of inductive reactance (X_L) of an inductor with the frequency (f) of the ac source of 100 V and variable frequency is shown in the fig.

- (i) Calculate the self-inductance of the inductor.
- (ii) When this inductor is used in series with a capacitor of unknown value and a resistor of 10 Ω at 300 s⁻¹, maximum power dissipation occurs in the circuit. Calculate the capacitance of the capacitor.

OR

- (a) A conductor of length 'l' is rotated about one of its ends at a constant angular speed 'ω' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor with (i) angular speed ω and (ii) length of the conductor l.
- (b) Two concentric circular loops of radius 1 cm and 20 cm are placed coaxially.
 - (i) Find mutual inductance of the arrangement.
 - (ii) If the current passed through the outer loop is changed at a rate of 5 A/ms, find the emf induced in the inner loop. Assume the magnetic field on the inner loop to be uniform.

5

- 37. (a) समविभव पृष्ठों के दो महत्त्वपूर्ण लक्षण लिखिए।
 - (b) किसी पतले वृत्ताकार छल्ले जिसकी त्रिज्या ${\bf r}$ है, को एकसमान आवेशित किया है तािक उसका रैखिक आवेश घनत्व λ हो जाए । इस छल्ले के अनुदिश छल्ले से x दूरी पर स्थित किसी बिन्दु ${\bf P}$ पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए । इस प्रकार यह सिद्ध कीजिए कि अधिक दूरियों ($x>>{\bf r}$) पर यह छल्ला एक बिन्दु आवेश की भाँति व्यवहार करता है ।

5

अथवा

- (a) स्थिर-विद्युत का गाउस का नियम लिखिए तथा किसी पतले एकसमान आवेशित लम्बे सीधे तार (रैखिक आवेश घनत्व $\lambda)$ के कारण इस तार से दूरी r पर स्थित किसी बिन्दु पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए ।
- (b) किसी क्षेत्र में विद्युत क्षेत्र का परिमाण (NC^{-1} में) दूरी r (m में) के साथ नीचे दिए अनुसार विचरण करता है :

E = 10r + 5

किसी बिन्दु $r=1\ m$ से किसी अन्य बिन्दु $r=10\ m$ तक गति कराने में विद्युत विभव में कितनी वृद्धि हो जाएगी ?

- 37. (a) Write two important characteristics of equipotential surfaces.
 - (b) A thin circular ring of radius r is charged uniformly so that its linear charge density becomes λ . Derive an expression for the electric field at a point P at a distance x from it along the axis of the ring. Hence, prove that at large distances (x >> r), the ring behaves as a point charge.

5

OR

- (a) State Gauss's law on electrostatics and derive an expression for the electric field due to a long straight thin uniformly charged wire (linear charge density λ) at a point lying at a distance r from the wire.
- (b) The magnitude of electric field (in NC⁻¹) in a region varies with the distance r(in m) as

$$E = 10 r + 5$$

By how much does the electric potential increase in moving from point at r = 1 m to a point at r = 10 m.