TERM - 1 MATHS

CLASS: XII

CHAPTER 1 : RELATION AND FUNCTION

WORKSHEET: 1

Q1	The function $f: A \rightarrow B$ defined by $f(x)=4 x+7, x \in R$ is (a) one-one (b) Many-one (c) Odd (d) Even
Q2	The number of bijective functions from set A to itself when A contains 6 elements is (a) 6 (b) $(6)^{2}$ (c) 6 ! (d) 2^{6}
Q3	Let L denote the set of all straight lines in a plane. Let a relation R be defined by I Rm if and only if I is perpendicular to $m \forall I, m \in L$. Then R is (a) reflexive only (b) Symmetric only (c) Transitive only (d) Equivalence relation
Q4	Let N be the set of natural numbers and the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $f(n)=2 n+3 \forall n \in N$. Then f is (a) injective (b) surjective (c) bijective (d) None of these
Q 5	The function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is (a) Onto (b) Not onto (c) Not one-one (d) None of these

Q 6	Let $f(x)=(x-1) /(x+1)$, then $f(f(x))$ is (a) $1 / x$ (b) $-1 / x$ (c) $1 /(x+1)$ (d) $1 /(x-1)$
Q 7	Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is (a) 144 (b) 12 (c) 24 (d) 64
Q 8	The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are (a) 1 (b) 2 (c) 3 (d) 5
Q 9	Let us define a relation R in R as $a R b$ if $a \geq b$. Then R is (a) an equivalence relation (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric
Q10	Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1$, $2),(2,3),(1,3)\}$. Then R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric, nor transitive
Q11	Let $A=\{1,2,3, \ldots . n\}$ and $B=\{a, b\}$. Then the number of surjections from A into B is (a) 2^{n} (b) $2^{n}-2$ (c) $2^{n}-1$ (d) none of these
Q12	Let $f: R \rightarrow R$ be defined by $f(x)=1 / x, \forall x \in R$. Then f is (a) one-one

	(b) onto (c) bijective (d) f is not defined
Q13	Which of the following functions from Z into Z are bijective? (a) $f(x)=x^{3}$ (b) $f(x)=x+2$ (c) $f(x)=2 x+1$ (d) $f(x)=x^{2}+1$
Q14	Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$. Then, pre-images of 17 and -3 , respectively, are (a) $\varphi,\{4,-4\}$ (b) $\{3,-3\}, \varphi$ (c) $\{4,-4\}, \varphi$ (d) $\{4,-4\},\{2,-2\}$
Q15	For real numbers x and y, define $x R y$ if and only if $x-y+\sqrt{ } 2$ is an irrational number. Then the relation R is (a) reflexive only (b) Symmetric only (c) Transitive only (d) None of these
Q16	Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$ if a is brother of b. Then R is (a) symmetric but not transitive (b) transitive but not symmetric (c) neither symmetric nor transitive (d) both symmetric and transitive
Q17	If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is (a) reflexive (b) Symmetric (c) Transitive (d) None of these
Q18	Let R be a relation on the set N of natural numbers denoted by $n R m \Leftrightarrow n$ is a factor of m (i.e. $n \mid m$). Then, R is

	(a) Reflexive and symmetric (b) Transitive and symmetric (c) Equivalence (d) Reflexive, transitive but not symmetric
Q19	Let $S=\{1,2,3,4,5\}$ and let $A=S \times S$. Define the relation R on A as follows: (a, b) $R(c, d$) iff ad $=c b$. Then, R is (a) reflexive only (b) Symmetric only (c) Transitive only (d) Equivalence relation
Q20	Let R be the relation "is congruent to" on the set of all triangles in a plane is (a) reflexive (b) symmetric (c) symmetric and reflexive (d) equivalence
Q21	Total number of equivalence relations defined in the set $S=\{a, b, c\}$ is (a) 5 (b) 3 ! (c) 23 (d) 33
Q22	The relation R is defined on the set of natural numbers as $\{(a, b): 2 a=b\}$. Then, R is given by (a) $\{(2,1),(4,2),(6,3), \ldots\}$ (b) $\{(1,2),(2,4),(3,6), \ldots \ldots .$. (c) R is not defined (d) None of these
Q23	Let $X=\{-1,0,1\}, Y=\{0,2\}$ and a function $f: X \rightarrow Y$ defined by $y=2 x^{4}$, is (a) one-one onto (b) one-one into (c) many-one onto (d) many-one into

$\begin{aligned} & \mathrm{Q} \\ & 24 \end{aligned}$	Let $g(x)=x^{2}-4 x-5$, then (a) g is one-one on R (b) g is not one-one on R (c) g is bijective on R (d) None of these
$\begin{aligned} & \mathrm{Q} \\ & 25 \end{aligned}$	The mapping $f: N \rightarrow N$ is given by $f(n)=1+n^{2}, n \in N$ when N is the set of natural numbers is (a) one-one and onto (b) onto but not one-one (c) one-one but not onto (d) neither one-one nor onto
$\begin{aligned} & \mathrm{Q} \\ & 26 \end{aligned}$	The function $f: R \rightarrow R$ given by $f(x)=x^{3}-1$ is (a) a one-one function (b) an onto function (c) a bijection (d) neither one-one nor onto
$\begin{aligned} & \mathrm{Q} \\ & 27 \end{aligned}$	Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ is a function defined by $f(x)=x\|x\|$ then f is (a) a bijection (b) injection but not surjection (c) surjection but not injection (d) neither injection nor surjection
$\begin{aligned} & \mathrm{Q} \\ & 28 \end{aligned}$	The domain of the function $f(x)=\frac{1}{\sqrt{\{\operatorname{sinx}\}+\{\sin (\pi+x)\}}}$ where $\}$ denotes fractional part, is (a) $[0, ~ п]$ (b) $(2 n+1) \pi / 2, n \in Z$ (c) $(0, \pi)$ (d) None of these
$\begin{aligned} & \mathrm{Q} \\ & 29 \end{aligned}$	Range of $f(x)=\sqrt{(1-\boldsymbol{\operatorname { c o s }} x) \sqrt{(1-\boldsymbol{\operatorname { c o s } x}) \sqrt{(1-\cos x) \ldots \ldots \infty}}}$ (a) $[0,1]$ (b) $(0,1)$ (c) $[0,2]$ (d) $(0,2)$

$\begin{aligned} & \mathrm{Q} \\ & 30 \end{aligned}$	The greatest integer function $f(x)=[x]$ is (a) One-one (b) Many-one (c) Both (a) \& (b) (d) None of these
	CASE STUDY: 1 Anu and Chhutki are playing Ludo at home during Covid-19. While rolling the dice, Anu's sister Nikki observed and noted that the possible outcomes of the throw every time belong to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes. $A=\{A, C\}, B=\{1,2,3,4,5,6\}$
Q 1	Let $R: B \rightarrow B$ be defined by $\mathrm{R}=\{(x, y): y$ is divisible by $x\}$ is a. Reflexive and transitive but not symmetric b. Reflexive and symmetric and not transitive c. Not reflexive but symmetric and transitive d. Equivalence
Q 2	Nikki wants to know the number of functions from A to B. How many number of functions are possible?

	a. 6^{2} b. 2^{6} C. 6 ! d. 2^{12}
Q 3	Let R be a relation on B defined by $R=\{(1,2),(2,2),(1,3),(3,4),(3,1)$, $(4,3),(5,5)\}$.Then R is a. Symmetric b. Reflexive c. Transitive d. None of these
Q 4	Nikki wants to know the number of relations possible from A to B. How many numbers of relations are possible? a. 6^{2} b. 2^{6} C. 6! d. 2^{12}
Q 5	Let $R: B \rightarrow B$ be defined by $\mathrm{R}=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then R is a. Symmetric b. Reflexive and Transitive c. Transitive and symmetric d. Equivalence
	CASE STUDY: 2 An organization conducted bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let $B=\{b 1, b 2, b 3\} G=\{g 1, g 2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race. Ravi decides to explore these sets for various types of relations and functions

Q 1
Ravi wishes to form all the relations possible from B to G. How many such relations are possible? a. 2^{5} b. 2^{6} c. 0 d. 2^{3}
Q 2
Let R: B \rightarrow B be defined by $R=\{(x, y): x$ and y are students of same sex\},
Then this relation R is
a. Equivalence
b. Reflexive only
c. Reflexive and symmetric but not transitive
d. Reflexive and transitive but not symmetric
Ravi wants to know among those relations, how many functions can be
formed from B to G?
a. 2^{2}

Q 4	Let $R: B \rightarrow G$ be defined by $\mathrm{R}=\{(\mathrm{b} 1, \mathrm{~g} 1),(\mathrm{b} 2, \mathrm{~g} 2),(\mathrm{b} 3, \mathrm{~g} 1)\}$, then R is \qquad a. Injective b. Surjective c. Neither Surjective nor Injective d. Surjective and Injective
Q 5	Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible? a. 0 b. 2! C. 3! d. 0 !
	CASE STUDY : 3 Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by $y=x^{2}$. Answer the following questions using the above information.
Q 1	Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}$ is \qquad a. Neither Surjective nor Injective b. Surjective c. Injective d. Bijective
Q 2	Let $f: N \rightarrow N$ be defined by $f(x)=x^{2}$ is \qquad a. Surjective but not Injective b. Surjective c. Injective d. Bijective
Q 3	Let $\mathrm{f}:\{1,2,3, \ldots\} \rightarrow\{1,4,9, \ldots$.$\} be defined by f(x)=x^{2}$ is \qquad a. Bijective

	b. Surjective but not Injective c. Injective but Surjective d. Neither Surjective nor Injective
Q 4	Let $: N \rightarrow R$ be defined by $f(x)=x^{2}$. Range of the function among the following is a. $\{1,4,9,16, \ldots\}$ b. $\{1,4,8,9,10, \ldots\}$ c. $\{1,4,9,15,16, \ldots\}$ d. $\{1,4,8,16, \ldots\}$
Q 5	The function f: $Z \rightarrow Z$ defined by $f(x)=x^{2}$ is a. Neither Injective nor Surjective b. Injective c. Surjective d. Bijective

Answers

1. Answer:
(a) one-one
2. Answer:
(c) 106 !
3. Answer:
(b) Symmetric only
4. Answer:
(a) injective
5. Answer:
(a) Onto
6. Answer:
(b) $-1 / x$
7. Answer:
(c) 24
8. Answer:
(d) 5
9. Answer:
(b) reflexive, transitive but not symmetric
10. Answer:
(a) reflexive but not symmetric
11. Answer:
(b) $2^{n}-2$
12. Answer:
(d) f is not defined
13. Answer:
(b) $f(x)=x+2$
14. Answer:
(c) $\{4,-4\}, \varphi$
15. Answer:
(a) reflexive only
16. Answer:
(d) both symmetric and transitive
17. Answer:
(a) transitive
18. Answer:
(d) Reflexive, transitive but not symmetric
19. Answer:
(d) Equivalence relation
20. Answer:
(d) equivalence
21. Answer:
(a) 5
22. Answer:
(b) $\{(1,2),(2,4),(3,6), \ldots \ldots .$.
23. Answer:
(c) many-one onto
24. Answer:
(b) g is not one-one on R
25. Answer:
(c) one-one but not onto
26. Answer:
(c) a bijection
27. Answer:
(a) a bijection
28. Answer:
(d) None of these
29. Answer:
(c) $[0,2]$
30. Answer:
(b) Many-one

Case Study 1

ANSWERS

1. (a) Reflexive and transitive but not symmetric
2. (a) 62
3. (d) None of these three
4. (d) 212
5. (b) Reflexive and Transitive

Case Study 2

ANSWERS

1. (a) 26
2. (a) Equivalence
3. (d) 23
4. (b) Surjective
5. (a) 0

Case Study 3

ANSWERS

1. (a) Neither Surjective nor Injective
2. (C) Injective
3. (a) Bijective
4. (a) $\{1,4,9,16, \ldots\}$
5. (a) Neither Injective nor Surjective
