

TERM - 1 MATHS CLASS: XII CHAPTER 1 : RELATION AND FUNCTION WORKSHEET: 1

Q1	The function $f : A \rightarrow B$ defined by $f(x) = 4x + 7$, $x \in R$ is (a) one-one (b) Many-one (c) Odd (d) Even
Q2	The number of bijective functions from set A to itself when A contains 6 elements is (a) 6 (b) (6) ² (c) 6! (d) 2 ⁶
Q3	Let L denote the set of all straight lines in a plane. Let a relation R be defined by I Rm if and only if I is perpendicular to m ∀ I, m ∈ L. Then R is (a) reflexive only (b) Symmetric only (c) Transitive only (d) Equivalence relation
Q4	Let N be the set of natural numbers and the function $f : N \rightarrow N$ be defined by $f(n) = 2n + 3 \forall n \in N$. Then f is (a) injective (b) surjective (c) bijective (d) None of these
Q 5	The function $f : R \rightarrow R$ defined by $f(x) = 3 - 4x$ is (a) Onto (b) Not onto (c) Not one-one (d) None of these

0.6	Let $f(x) = (x-1)/(x+1)$, then $f(f(x))$ is
Q 6	
	(a) $1/x$
	(b) $-1/x$
	(c) $1/(x+1)$
	(d) 1/(x-1)
Q 7	Set A has 3 elements and the set B has 4 elements. Then the number of
	injective mappings that can be defined from A to B is
	(a) 144
	(b) 12
	(c) 24
	(d) 64
Q 8	The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are
	(a) 1
	(b) 2
	(c) 3
	(d) 5
	Latus define a relation D in D as a Dh if a N h. Then D is
Q 9	Let us define a relation R in R as aRb if $a \ge b$. Then R is
	(a) an equivalence relation
	(b) reflexive, transitive but not symmetric
	(c) symmetric, transitive but not reflexive
	(d) neither transitive nor reflexive but symmetric
Q10	Let A = $\{1, 2, 3\}$ and consider the relation R = $\{(1, 1), (2, 2), (3, 3), (1, 3)\}$
	2), (2, 3), (1, 3)}. Then R is
	(a) reflexive but not symmetric
	(b) reflexive but not transitive
	(c) symmetric and transitive
	(d) neither symmetric, nor transitive
	(d) heldrer symmetric, nor danslave
Q11	Let A = $\{1, 2, 3, \dots, n\}$ and B = $\{a, b\}$. Then the number of surjections
	from A into B is
	(a) 2 ⁿ
	(b) 2 ⁿ – 2
	(c) $2^n - 1$
	(d) none of these
012	Lat $f \in D$. D be defined by $f(y) = 1/y$, $y \in D$. Then f is
Q12	Let f : R \rightarrow R be defined by f(x) = 1/x, $\forall x \in \mathbb{R}$. Then f is
	(a) one-one

	(b) onto (c) bijective
	(d) f is not defined
Q13	Which of the following functions from Z into Z are bijective? (a) $f(x) = x^3$
	(b) $f(x) = x + 2$
	(c) $f(x) = 2x + 1$ (d) $f(x) = x^2 + 1$
Q14	Let $f : R \rightarrow R$ be defined by $f(x) = x^2 + 1$. Then, pre-images of 17 and – 3, respectively, are
	(a) φ, {4, - 4} (b) {3, - 3}, φ
	(c) {4, -4}, φ
	(d) {4, -4}, {2, -2}
Q15	For real numbers x and y, define xRy if and only if $x - y + \sqrt{2}$ is an
L	irrational number. Then the relation R is
	(a) reflexive only
	(b) Symmetric only (c) Transitive only
	(d) None of these
Q16	Consider the non-empty set consisting of children in a family and a relation
	R defined as aRb if a is brother of b. Then R is
	(a) symmetric but not transitive
	(b) transitive but not symmetric(c) neither symmetric nor transitive
	(d) both symmetric and transitive
Q17	If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is
~	(a) reflexive
	(b) Symmetric (c) Transitive
	(d) None of these
Q18	Let R be a relation on the set N of natural numbers denoted by nRm \Leftrightarrow n is
	a factor of m (i.e. n m). Then, R is

	(a) Reflexive and symmetric
	(b) Transitive and symmetric
	(c) Equivalence (d) Reflexive, transitive but not symmetric
	(d) Kellexive, transitive but not symmetric
Q19	Let S = $\{1, 2, 3, 4, 5\}$ and let A = S × S. Define the relation R on A as
	follows:
	(a, b) R (c, d) iff $ad = cb$. Then, R is
	(a) reflexive only
	(b) Symmetric only
	(c) Transitive only (d) Equivalence relation
Q20	Let R be the relation "is congruent to" on the set of all triangles in a plane
	is Contraction of the second
	(a) reflexive
	(b) symmetric
	(c) symmetric and reflexive (d) equivalence
	(d) equivalence
021	Total number of equivalence relations defined in the set $S = \{a, b, c\}$ is
Q21	(a) 5
	(b) 3!
	(c) 23
	(d) 33
Q22	The relation R is defined on the set of natural numbers as $\{(a, b) : 2a = b\}$.
~	Then, R is given by
	(a) {(2, 1), (4, 2), (6, 3),}
	(b) {(1, 2), (2, 4), (3, 6),}
	(c) R is not defined
	(d) None of these
Q23	Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X \rightarrow Y defined by y = 2x ⁴ ,
	is
	(a) one-one onto
	(b) one-one into
	(c) many-one onto
	(d) many-one into

Q 24	Let $g(x) = x^2 - 4x - 5$, then (a) g is one-one on R (b) g is not one-one on R (c) g is bijective on R (d) None of these
Q 25	The mapping $f : N \rightarrow N$ is given by $f(n) = 1 + n^2$, $n \in N$ when N is the set of natural numbers is (a) one-one and onto (b) onto but not one-one (c) one-one but not onto (d) neither one-one nor onto
Q 26	The function $f : R \rightarrow R$ given by $f(x) = x^3 - 1$ is (a) a one-one function (b) an onto function (c) a bijection (d) neither one-one nor onto
Q 27	Let A = {x : $-1 \le x \le 1$ } and f : A \rightarrow A is a function defined by f(x) = x x then f is (a) a bijection (b) injection but not surjection (c) surjection but not injection (d) neither injection nor surjection
Q 28	The domain of the function $f(x) = \frac{1}{\sqrt{\{sinx\} + \{sin(\pi+x)\}}}}$ where $\{ \}$ denotes fractional part, is (a) [0, π] (b) (2n + 1) $\pi/2$, n $\in \mathbb{Z}$ (c) (0, π) (d) None of these
Q 29	Range of $f(x) = \sqrt{(1 - \cos x) \sqrt{(1 - \cos x) \dots \dots \infty}}$ (a) [0, 1] (b) (0, 1) (c) [0, 2] (d) (0, 2)

Q 30	The greatest integer function f(x) = [x] is (a) One-one (b) Many-one (c) Both (a) & (b) (d) None of these
	CASE STUDY : 1
	Anu and Chhutki are playing Ludo at home during Covid-19. While rolling the dice, Anu's sister Nikki observed and noted that the possible outcomes of the throw every time belong to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
	$A = \{A, C\}, B = \{1, 2, 3, 4, 5, 6\}$
Q 1	Let $R : B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x \}$ is
	a. Reflexive and transitive but not symmetric
	b. Reflexive and symmetric and not transitive
	c. Not reflexive but symmetric and transitive
	d. Equivalence
Q 2	Nikki wants to know the number of functions from A to B. How many number of functions are possible?

	a. 6 ²
	b. 2 ⁶
	c. 6!
	d. 2 ¹²
Q 3	Let R be a relation on B defined by $R = \{(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)\}$. Then R is
	a. Symmetric
	b. Reflexive
	c. Transitive
	d. None of these
Q 4	Nikki wants to know the number of relations possible from A to B. How many numbers of relations are possible?
	a. 6 ²
	b. 2 ⁶
	c. 6!
	d. 2 ¹²
Q 5	Let $R: B \to B$ be defined by $R = \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,5), (6,6)\},\$ then R is
	a. Symmetric
	b. Reflexive and Transitive
	c. Transitive and symmetric
	d. Equivalence
	CASE STUDY: 2
	An organization conducted bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project.
	Let $B = \{b1, b2, b3\} G = \{g1, g2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race.
	Ravi decides to explore these sets for various types of relations and functions

	<image/>
Q 1	Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
	a. 2 ⁵
	b. 2 ⁶
	c. 0
	d. 2 ³
Q 2	Let R: B \rightarrow B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is
	a. Equivalence
	b. Reflexive only
	c. Reflexive and symmetric but not transitive
	d. Reflexive and transitive but not symmetric
Q 3	Ravi wants to know among those relations, how many functions can be formed from B to G?
	a. 2 ²
	b. 2 ¹²
	c. 3 ²
	d. 2 ³

Q 4	Let $R: B \rightarrow G$ be defined by $R = \{ (b1,g1), (b2,g2), (b3,g1) \}$, then R is
	a. Injective
	b. Surjective
	c. Neither Surjective nor Injective
	d. Surjective and Injective
Q 5	Ravi wants to find the number of injective functions from B to G. How many
	numbers of injective functions are possible?
	a. 0
	b. 2!
	c. 3!
	d. 0!
	CASE STUDY : 3
	Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by $y = x^2$. Answer the following questions using the above information.
Q 1	Let $f: R \to R$ be defined by $f(x) = x^2$ is
	a. Neither Surjective nor Injective
	b. Surjective
	c. Injective
	d. Bijective
Q 2	Let $f: N \to N$ be defined by $f(x) = x^2$ is
	a. Surjective but not Injective
	b. Surjective
	c. Injective
	d. Bijective
Q 3	Let f: $\{1,2,3,\} \rightarrow \{1,4,9,\}$ be defined by $f(x) = x^2$ is
	a. Bijective

	b. Surjective but not Injective
	c. Injective but Surjective
	d. Neither Surjective nor Injective
Q 4	Let : $N \rightarrow R$ be defined by $f(x) = x^2$. Range of the function among the following is
	a. {1, 4, 9, 16,}
	b. {1, 4, 8, 9, 10,}
	c. {1, 4, 9, 15, 16,}
	d. {1, 4, 8, 16,}
Q 5	The function f: $Z \rightarrow Z$ defined by $f(x) = x^2$ is
	a. Neither Injective nor Surjective
	b. Injective
	c. Surjective
	d. Bijective

Answers

- 1. Answer:
 - (a) one-one
- 2. Answer:
 - (c) 106!
- 3. Answer:
 - (b) Symmetric only
- 4. Answer: (a) injective
- 5. Answer:
 - (a) Onto
- 6. Answer:
 - (b) -1/x
- 7. Answer:

Answer:
(d) 5

9. Answer:

- (b) reflexive, transitive but not symmetric
- 10. Answer:
 - (a) reflexive but not symmetric
- 11. Answer:
 - (b) 2ⁿ 2
- 12. Answer:
 - (d) f is not defined
- 13. Answer:
 - (b) f(x) = x + 2
- 14. Answer:
 - (c) {4, -4}, φ
- 15. Answer:
 - (a) reflexive only
- 16. Answer:
 - (d) both symmetric and transitive
- 17. Answer:
 - (a) transitive
- 18. Answer:
 - (d) Reflexive, transitive but not symmetric
- 19. Answer:
 - (d) Equivalence relation
- 20. Answer:
 - (d) equivalence
- 21. Answer:
 - (a) 5
- 22. Answer:
 - (b) {(1, 2), (2, 4), (3, 6),}
- 23. Answer:
 - (c) many-one onto
- 24. Answer:
 - (b) g is not one-one on R
- 25. Answer:
 - (c) one-one but not onto
- 26. Answer:
 - (c) a bijection
- 27. Answer:
 - (a) a bijection
- 28. Answer:
 - (d) None of these

29. Answer: (c) [0, 2]30. Answer: (b) Many-one

Case Study 1

ANSWERS

- 1. (a) Reflexive and transitive but not symmetric
- 2. (a) 62
- 3. (d) None of these three
- 4. (d) 212
- 5. (b) Reflexive and Transitive

Case Study 2

ANSWERS

- 1. (a) 26
- 2. (a) Equivalence
- 3. (d) 23
- 4. (b) Surjective
- 5. (a) 0

Case Study 3

ANSWERS

- 1. (a) Neither Surjective nor Injective
- 2. (C) Injective
- 3. (a) Bijective
- 4. (a) {1, 4, 9, 16,...}
- 5. (a) Neither Injective nor Surjective