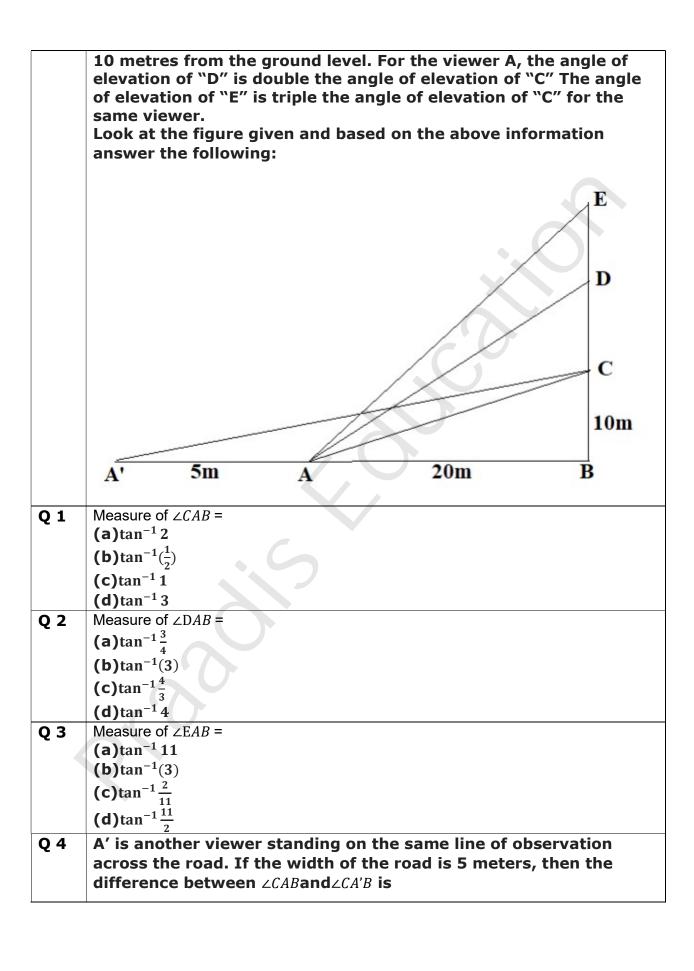
TERM - 1 MATHS CLASS: XII MATHEMATICS (041) CHAPTER:2 INVERSE TRIGONOMETRIC FUNCTIONS WORKSHEET 2

Q1	Which of the following is the principal value branch of $\cos^{-1}x$?
	(a) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
	(b) $(0,\pi)$
	(c) [0, π]
	$(d)(0,\pi)-\{\frac{\pi}{2}\}$
Q2	Which of the following is the principal value branch of $\csc^{-1} x$?
	(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)_{-}$
	(b) $(0,\pi) - \{\frac{\pi}{2}\}$
	(c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
	(d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
Q3	The value of $\sin^{-1}\left[\cos\left(\frac{33\pi}{5}\right)\right]$ is
	(a) $\frac{3\pi}{5}$
	$(b)^{\frac{-7\pi}{5}}$
	(c) $\frac{\pi}{10}$
	$(d)^{\frac{10}{10}}$
Q4	The domain of the function $\cos^{-1}(2x-1)$ is
	(a) [0,1]
	(b)[-1,1]
	(c) [0,1/2]
	(d)[0, π]
Q 5	The domain of the function defined by $\sin^{-1}(\sqrt{x-1})$ is
	(a) [1,2]
	(b) [-1,1]
	(c) [0,1] (d) None of these
Q 6	The value of $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$ is
	(a) $\frac{\pi}{2}$
	(b) $\frac{3\pi}{2}$ (c) $\frac{5\pi}{2}$
	(c) $\frac{5\pi}{2}$
	$(d)\frac{7\pi}{2}$
	<u> </u>


Q 7	The value of $2\sec^{-1}(2) + \sin^{-1}(\frac{1}{2})$ is
	(a) $\frac{\pi}{6}$
	$(b)^{\frac{5\pi}{6}}$
	(c) $\frac{7\pi}{6}$
	(d)1
Q 8	If $\cos^{-1} x > \sin^{-1} x$ then
	(a) $\frac{1}{\sqrt{2}} < x \le 1$
	(b) $0 \le x < \frac{1}{\sqrt{2}}$
	(c) $-1 < x \le \frac{1}{\sqrt{2}}$
	$(\mathbf{d})x > 0$
Q 9	$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \dots$
	(a) $\frac{\pi}{6}$
	$(b)\frac{5\pi}{6}$
	(c) $-\frac{\pi}{6}$
010	
Q10	The value of $\cos^{-1}\left[\cos\left(-\frac{\pi}{3}\right)\right]$ =
	(a) $-\frac{\pi}{3}$
	$(\mathbf{b})\frac{\pi}{3}$
	(c) $\frac{4\pi}{3}$
	$(d)^{\frac{2\pi}{3}}$
Q11	The value of $\sin^{-1} \left[\sin \left(\frac{5\pi}{3} \right) \right] = \dots$
	(a) $-\frac{\pi}{3}$
	(b) $\frac{5\pi}{3}$ (c) $\frac{\pi}{3}$
	(c) $\frac{\pi}{3}$
	$(d)\frac{2\pi}{3}$
Q 12	$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + 2\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is
	(a) $\frac{5\pi}{6}$
	$(b)^{\frac{\pi}{6}}$
	(b) $\frac{\pi}{4}$ (c) $\frac{4\pi}{3}$
	$(\mathbf{d})\frac{4\pi}{6}$
	$\left(\mathbf{u}\right)_{\overline{6}}$

Q13	The value of $\sin^{-1}\left[\sin\left(\frac{7\pi}{6}\right)\right] = \dots$
	(a) $\frac{\pi}{6}$
	(b) $\frac{5\pi}{6}$
	(c) $-\frac{\pi}{6}$
	$(d)^{\frac{7\pi}{6}}$
Q14	
	$\sin\left\{\frac{\pi}{3}-\sin^{-1}\left(\left(-\frac{1}{2}\right)\right)\right\}$
	(a) 0
	$(b)^{\frac{1}{2}}$
	(c) $\frac{\sqrt{3}}{2}$
	(d)1
Q15	Value of $\sin\left(\cos^{-1}\frac{4}{5}\right)$ is
	(a) 1/2
	(b) 3/5
	(c) 2/3
016	(d)3/4
Q16	Value of $\cos\left(tan^{-1}\frac{4}{3}\right)$ is
	(a) 2/3 (b) 1/2
	(c) 3/4
	(d)3/5
Q 17	$\cos^2\left(\sin^{-1}\left(\frac{1}{2}\right)\right) + \sin^2\left(\cos^{-1}\left(\frac{1}{2}\right)\right)$
	(a) 1/2
	(b)1
	(c) 3/2 (d)2
Q 18	
	$\sin^{-1}\left(\frac{1}{2}\right) + 2\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \cdots$
	(a) $\frac{\pi}{2}$
	(b) π
	(c) $\frac{3\pi}{4}$
	$(\mathbf{d})^{\frac{3\pi}{2}}$
Q 19	The value of $\cos^{-1}\left[\cos\left(\frac{4\pi}{3}\right)\right] = \dots$

	(a) $\frac{\pi}{3}$
	$(b)^{\frac{2\pi}{3}}$
	(c) $\frac{4\pi}{3}$
	(d) $-\frac{\pi}{3}$
0.00	
Q 20	The value of $\tan^{-1}\left[\tan\left(\frac{7\pi}{4}\right)\right] = \dots$
	(a) $-\frac{\pi}{4}$
	$(\mathbf{b})\frac{\pi}{4}$
	(c) $\frac{3\pi}{4}$
	$(d) - \frac{3\pi}{4}$
Q 21	$\cos\left(\frac{\pi}{3} + \cos^{-1}(-1)\right) = \cdots$
	(a) 1/2
	(b)-1/2
	(c) 1
	(d)-1
Q 22	Domain of $\sin^{-1} x$ is
	(a) [0,1]
	$(\mathbf{b})(-\infty,\infty)$
	(c) $[0,\pi]$
	(d)[-1,1]
Q 23	$\left \sin \left[\tan^{-1} \left(-\sqrt{3} \right) + \cos^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right] = \cdots \right $
	[2)]
	(a) 1
	(b)-1
	(c) 0
	(d)2
Q 24	The solution set of $\sin^{-1} x \le \cos^{-1} x$ is
	(a) $\frac{1}{\sqrt{2}} \le x \le 1$
	(b) $-\frac{1}{\sqrt{2}} \le x \le 1$
	(c) $-1 \le x \le \frac{1}{\sqrt{2}}$
	$(\mathbf{d}) - \frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$
Q 25	If $\tan^{-1} x > \cot^{-1} x $ then
	(a) $x > 1$
	(b) $x < 1$
<u> </u>	

	(c) $x = 1$
	$(\mathbf{d})x \in R$
Q 26	Value of $\cos \left[\frac{\pi}{6} + \cos^{-1} \left(-\frac{1}{2} \right) \right] = \cdots$
	$\left(-\frac{1}{2}\right) = \cdots$
	(a) $-\frac{\sqrt{3}}{2}$
	(b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$
	=
	(c) $\frac{\sqrt{5}-1}{4}$
	$(d)^{\frac{\sqrt{3}+1}{2\sqrt{2}}}$
Q 27	If $\sin^{-1} x = y$, then
	(a) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
	$(\mathbf{b}) - \frac{\pi}{2} \le y \le \frac{\pi}{2}$
	(c) $0 < y < \pi$
	$(\mathbf{d})0 \leq y \leq \pi$
Q 28	
	$\cot^{-1}\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1-\sin x}}\right)=\cdots (0< x<\frac{\pi}{2})$
	(a) $\frac{x}{2}$
	$(b)\frac{\pi}{2} - 2x$
	(c) $2\pi - x$
	$(\mathbf{d})\pi - \frac{x}{2}$
Q 29	
	$\cos\left[\tan^{-1}\left\{\cot\left(\sin^{-1}\frac{1}{2}\right)\right\}\right] = \cdots$
	(a) 1
	(b) 1/4
	(c) 1/8
	(d)1/2
Q 30	$\cot^{-1}\left(\frac{\sqrt{1+x^2-1}}{x}\right) = \cdots$
	(a) $-\frac{1}{2} \tan^{-1} x$
	(b) $\cot^{-1} x$
	(c) $\frac{\pi}{2} - \frac{1}{2} \tan^{-1} x$
	$(\mathbf{d})\frac{\pi}{2} - \frac{1}{2}\cot^{-1}x$
	CASE STUDY: 1
	Read the following text and answer on the basis of the same: The value of an inverse trigonometric function which lies in the
	The value of all inverse digonometric function which hes in the

	range of principal branch is called the principal value of that
	inverse trigonometric function.
Q 1	Principal value of $\sin^{-1}\left(\frac{1}{2}\right)$ is
	$(a)\frac{\pi}{6}$
	$(b)^{\frac{\pi}{3}}$
	$(c)\frac{\pi}{4}$
	$(d)\frac{\pi}{2}$
Q 2	Principal value of $tan^{-1}(1)$ is
	$(a)\frac{\pi}{3}$
	(b) π
	$(c)^{\frac{\pi}{4}}$
	$(\mathbf{d})^{\frac{\pi}{6}}$
Q 3	Principal value of $\cot^{-1}(\sqrt{3})$ is
Q J	Fillicipal value of tot (\(\frac{3}{3}\)) is
	$(a)^{\frac{\pi}{4}}$
	$(\mathbf{b})\frac{\pi}{2}$
	$(c)\frac{\pi}{6}$
	$(\mathbf{d})^{\frac{\pi}{2}}$
Q 4	Principal value of $\sin^{-1}(1) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is
	Finicipal value of sin (1) + sin $\left(\frac{1}{\sqrt{2}}\right)$ is
	$(a)2\pi$
	(b) π
	$(c)\frac{3\pi}{4}$
	$(d)\frac{\pi}{3}$
Q 5	Principal value of $2\cos^{-1}(1) + 5\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is
	(\2)
	$(a)\frac{3\pi}{4}$
	$(b)\frac{\pi}{4}$
	$(c)\frac{\pi}{2}$
	$(\mathbf{d})^{\frac{5\pi}{4}}$
	CASE STUDY: 2
	The Government of India is planning to fix a hoarding board at the
	face of a building on the road of a busy market for awareness on
	COVID-19 protocol. Ram, Robert and Rahim are the three
	engineers who are working on this project. "A" is considered to be
	a person viewing the hoarding board 20 metres away from the
	building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at
	three different locations namely C, D and E. "C" is at the height of
L	and the state of t

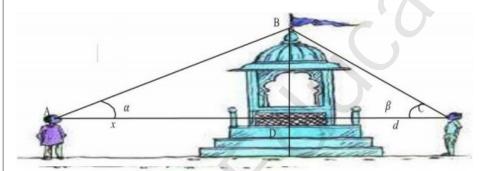
(a) tan ⁻¹	$\left(\frac{1}{2}\right)$
	:-:

(b)
$$\tan^{-1}\left(\frac{1}{8}\right)$$

(c)
$$\tan^{-1}\frac{2}{5}$$

(d)
$$\tan^{-1}\frac{11}{21}$$

Q 5 Domain and range of $tan^{-1}x =$


(a)
$$R^+$$
, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(b)
$$R^{-}, \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

(c)
$$R$$
, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(d)
$$R$$
, $\left(0,\frac{\pi}{2}\right)$

CASE STUDY: 3

Two men on either side of a temple of 30 meters high observe its top at the angles of elevation α and β respectively. (As shown in the figure above). The distance between the two men is $40\sqrt{3}$ meters and the distance between the first person A and the temple is $30\sqrt{3}$ meters.

Based on the above information answer the following:

Q 1
$$\angle CAB = \alpha = \dots$$

(a)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(b)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

(c)
$$\sin^{-1}(2)$$

(d)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Q 2
$$\angle CAB = \alpha = ...$$

(a)
$$cos^{-1}\left(\frac{1}{5}\right)$$

(b)
$$\cos^{-1}\left(\frac{2}{5}\right)$$

(c)
$$cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(d)
$$cos^{-1}\left(\frac{4}{5}\right)$$

Q 3
$$\angle BCA = \beta = ...$$

	(a) $\tan^{-1}(\frac{1}{2})$	
	(b) $\tan^{-1}(2)$	
	(c) $\tan^{-1}\frac{1}{\sqrt{3}}$	
	(d) $\tan^{-1}\sqrt{3}$	
Q 4	∠ABC=	
	$(a)^{\frac{\pi}{4}}$	
	$(\mathbf{b})\frac{\dot{\pi}}{6}$	
	$(c)^{\frac{n}{2}}$	
	$\left(\mathbf{d}\right)^{\frac{\pi}{3}}$	
Q 5	Domain and range of $COS^{-1}x =$	X \
	(a) $(-1,1),(0,\pi)$	
	(b) $[-1,1],(0,\pi)$	
	(c) $[-1,1],[0,\pi]$	
	$ (\mathbf{d})(-1,1), \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $	

ANSWERS

TERM - 1 MATHS

CLASS: XII MATHEMATICS (041) CHAPTER: 2 INVERSE TRIGONOMETRIC FUNCTIONS

Q1	(c) [0, π]
Q2	(d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
Q3	$(d)^{-\pi}_{10}$
Q4	(a) [0,1]
Q 5	(a) [1,2]
Q 6	(a) $\frac{\pi}{2}$
Q 7	$(b)\frac{5\pi}{6}$
Q 8	(c) $-1 < x \le \frac{1}{\sqrt{2}}$
Q 9	$(b)\frac{5\pi}{6}$
Q10	$(b)\frac{\pi}{3}$
Q11	(a) $-\frac{\pi}{3}$
Q 12	(a) $\frac{5\pi}{6}$
Q13	(c) $-\frac{\pi}{6}$
Q14	(d)1
Q15	(b) 3/5
Q16	(d)3/5
Q 17	(c) 3/2
Q 18	$(d)\frac{3\pi}{2}$
Q 19	(b) $\frac{2\pi}{3}$
Q 20	(a) $-\frac{\pi}{4}$
Q 21	(b)-1/2
Q 22	(d)[-1,1]
Q 23	
Q 24	(c) $-1 \le x \le \frac{1}{\sqrt{2}}$
Q 25	(a) $x > 1$
Q 26	(a) $-\frac{\sqrt{3}}{2}$
Q 27	
Q 28	$(d)\pi - \frac{x}{2}$

Q 29	(d)1/2
Q 30	(c) $\frac{\pi}{2} - \frac{1}{2} \tan^{-1} x$
	ANSWER TO CASE STUDY: 1
Q 1	$(a)\frac{\pi}{6}$
Q 2	$(c)\frac{\pi}{4}$
Q 3	$(c)^{\frac{\pi}{6}}$
Q 4	$(c)\frac{3\pi}{4}$
Q 5	$(d)\frac{5\pi}{4}$
	ANSWER TO CASE STUDY: 2
Q 1	(b) $\tan^{-1}(\frac{1}{2})$
Q 2	(c) $\tan^{-1}\frac{4}{3}$
Q 3	(d) $\tan^{-1}\frac{11}{2}$
Q 4	(b) $\tan^{-1}\left(\frac{1}{8}\right)$
Q 5	(c) R , $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
	ANSWER TO CASE STUDY: 3
Q 1	(b) $\sin^{-1}\left(\frac{1}{2}\right)$
Q 2	$(c)cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Q 3	(d) $\tan^{-1}\sqrt{3}$
Q 4	$(c)\frac{\pi}{2}$
Q 5	(c) $[-1,1],[0,\pi]$