TERM - 1 MATHS

CLASS: XII

CHAPTER 3: MATRICES

WORKSHEET 3

1. A matrix is an ordered rectangular array of numbers or functions.
2. A matrix having m rows and n columns is called a matrix of order $m \times n$
3. [a_{ij}] $\mathrm{m} \times 1$ is a column matrix.
4. $\left[\mathrm{a}_{\mathrm{ij}}\right] 1 \times \mathrm{n}$ is a row matrix.
5. An $m \times n$ matrix is a square matrix if $m=n$
6. $A=\left[a_{i j}\right] m \times m$ is a diagonal matrix if $a_{i j}=0$ when $i \neq j$
7. $A=\left[a_{i j}\right] m \times m$ is a scalar matrix if $a_{i j}=0$ when $i \neq j, a_{i j}=k(k$ is some constant),When $\mathrm{i}=\mathrm{j}$
8. $A=\left[a_{i j}\right] m \times m$ is an identity matrix if $a_{i j}=1$ when $i=j, a_{i j}=0$ when $i \neq j$
9. $A=\left[a_{i j}\right]=\left[b_{i j}\right]=B$ if (i) A and B are of same order, (ii) $a_{i j}=b_{i j}$

For all possible values of i and j
10. $K A=k\left[a_{i j}\right] m \times n=\left[k a_{i j}\right] m \times n$
11. $-\mathrm{A}=(-1) \mathrm{A}$
12. $A-B=A+(-B)$
13. $A+B=B+A$ where A and B are of same order
14. $(A+B)+C=A+(B+c)$ where A, B and C are of same order.
15. $K(A+B)=k A+k B$ where A and B are of same order , k is constant.
16. $(k+m) A=k A+m A$ where $k a d n m$ are constant.
17. (i) $A(B C)=(A B) C$ (ii) $A(B+C)=A B+A C$ (iii) $(A+B) C=A C+B C$
18. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{mxn}$ then $A^{\prime}=\left[\mathrm{a}_{\mathrm{ji}}\right] \mathrm{n} \times \mathrm{m}$
19.
(i) $\left(A^{\prime}\right)^{\prime}=\mathrm{A}$
(ii) $(k A)^{\prime}=\mathrm{k} A^{\prime}$
(iii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(iv) $(A B)^{\prime}=B^{\prime} A^{\prime}$
20. A is symmetric matrix if $A^{\prime}=\mathrm{A}$
21. $\quad \mathrm{A}$ is skew symmetric matrix if $A^{\prime}=-\mathrm{A}$
22. Any square matrix A can be represented as the sum of a symmetric $\frac{1}{2}(A+A)^{\prime}$ and a skew symmetric matrix $\frac{1}{2}(A-A)^{\prime}$.
23. If A and B are two square matrix such that $A B=B A=I$, then B is the inverse of A and is denoted by A^{-1} and A is inverse of B.
24. If A and B are invertible matrices of same order , $(A B)^{-1}=B \quad A^{-1}$
25. Inverse of a square matrix, if it exists, is unique.

MCQ

Q1	If $\left.A=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], B=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right] X=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], Y=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], ~\right] . ~$

$A B+X Y$ equals to
(a) [28]
(b) $[24]$
(c) $[12]$
(d) $[-28]$

Q2 The number of all possible matrices of order 3×3 will each entry 0 or 1 is
(a) 27
(b) 18
(c) 81
(d) 512 .

Q3 If matrix A is both symmetric and skew symmetric, then
(a) A is diagonal matrix
(b) A is square and zero matrix
(c) A is square matrix
(d) None of these

Q 4 If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then the value of a for which $A^{2}=\mathrm{B}$ is
(a) 1
(b) -1
(c) 4
(d) Not possible to find

Q 5 C is a skew symmetric matrix of order n, X is a column matrix of order $n X 1$ then $X^{\prime} C X$ is a
(a) square matrix
(b) identity matrix
(c) zero marix
(d) None of these

Q $6 \quad A$ is a 3×4 matrix. A matrix B is such that $A^{\prime} B$ and $B A^{\prime}$ are defined .Then the order of B is
(a) 3×4
(b) 3×3
(c) 4×4
(d) 4×3

Q 7 . If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] \quad A^{2}=\left[\begin{array}{ll}x & y \\ y & x\end{array}\right]$ then value of x and y are
(a) $x=a^{2}+b^{2} y=a^{2}-b^{2}$
(b) $x=2 a b y=a^{2}+b^{2}$

	(c) $x=a^{2}+b^{2} y=a b$ (d) $x=a^{2}+b^{2} y=2 a b$
Q 8	If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-k A-5 I=0$ then the value of k is (a) 3 (b) 7 (c) 5 (d) 9
Q 9	If $A\left[\begin{array}{ccc}1 & -2 & -5 \\ 3 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$ then A is (a) $\left[\begin{array}{lll}2 & -1 & 1 \\ 0 & -3 & 4\end{array}\right]$ (b) $\left[\begin{array}{cc}5 & -2 \\ 1 & 0 \\ -3 & 4\end{array}\right]$ (c) $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]$ (d) $\left[\begin{array}{ccc}-1 & 1 & 0 \\ 2 & -3 & 4\end{array}\right]$
Q10	If $A=\left[\begin{array}{lll}1 & -2 & 2 \\ 4 & -3 & 0 \\ 5 & -1 & 6\end{array}\right] \quad B=\left[\begin{array}{ccc}1 & 2 & 3 \\ -4 & -5 & -6 \\ 7 & -8 & 9\end{array}\right]$ then the element of second column and third row of $A B$ is (a) 1 (b) -44 (c) 30 (d) -33
Q11	The diagonal elements of a skew symmetric matrix are all zeros (b) are all equal to some scalar k not equal to zero (c) can be any number (d) None of these
$\begin{aligned} & \mathrm{Q} \\ & 12 \end{aligned}$	If $\mathrm{A}=\left[\begin{array}{cc}3 & x+1 \\ 2 x+3 & x+2\end{array}\right]$ is a symmetric matrix, then x is (a) 4 (b) 2 (c) -4 (d) -2
$\begin{aligned} & \mathrm{Q} \\ & 13 \end{aligned}$	Choose the correct statement: (a) Every identity matrix is a scalar matrix . (b) Every scalar matrix is a identity matrix. (c) Each diagonal matrix is a identity matrix. (d) A square matrix with all the elements 1 is an identity matrix.
Q14	If A is square matrix such that $A^{2}=\mathrm{A}$, then $(I+A)^{2}-3 \mathrm{~A}$ is (a) I (b) 2 A (c) 3 I (d) A

Q15	The values of x, y and z, if $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$ are (a) $x=2 y=3 z=4$ (b) $x=2 y=4 z=3$ (c) $x=3 \quad y=4 \quad z=2$ (d) $x=3 y=2 z=4$
Q16	If matrix $A=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ is the square root of the 2×2 identity matrix, then the relation a between a, b and c is (a) $a^{2}+b c-1=0$ (b) $a^{2}-b c-1=0$ (c) $a^{2}+b c+1=0$ (d) $-a^{2}+b c-1=0$
$\begin{aligned} & \mathrm{Q} \\ & 17 \end{aligned}$	Suppose 3×3 matrix $A=[a i j]$, whose elements are given by $\mathrm{a}_{\mathrm{ij}}=i^{2}-j^{2}$ Then a ${ }_{32}$ is equal to (a) 5 (b) 1 (c) 2 (d) 3
$\begin{aligned} & \mathrm{Q} \\ & 18 \end{aligned}$	If $\left[\begin{array}{cc}1 & 2 \\ -2 & -b\end{array}\right]+\left[\begin{array}{ll}a & 4 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 0\end{array}\right]$, then $a^{2}+b^{2}$ is equal to (a) 20 (b) 22 (c) 12 (d) 10
$\begin{aligned} & \mathrm{Q} \\ & 19 \end{aligned}$	$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$ then the value of x is (a) 0 (b) 3 (c) 7 (d) 10
$\begin{aligned} & \mathrm{Q} \\ & 20 \end{aligned}$	If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right] \quad$ then A^{2} is equal to (a) 0 (b) - A (c) I (d) 2 A
$\begin{aligned} & \mathrm{Q} \\ & 21 \end{aligned}$	If $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=O$ then the value of x is (a) $5 \sqrt{5}$ (b) $\pm 4 \sqrt{3}$ (c) $\pm 3 \sqrt{5}$ (d) $\pm 6 \sqrt{5}$
$\begin{aligned} & \mathrm{Q} \\ & 22 \end{aligned}$	If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the value of k so that $A^{2}=8 \mathrm{~A}+\mathrm{kI} \quad$ is (a) 4 (b) 5 (c) 6 (d) - 7

Q 23	If $\mathrm{X}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]$ and $\mathrm{A}=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ satisfy the equation AX $=B$ Then the matrix A is equal to (a) $\left[\begin{array}{cc}-7 & 26 \\ 1 & -5\end{array}\right]$ (b) $\left[\begin{array}{ll}7 & 26 \\ 4 & 17\end{array}\right]$ (c) $\left[\begin{array}{cc}-7 & -4 \\ 26 & 13\end{array}\right]$ (d) $\left[\begin{array}{ll}-7 & 26 \\ -6 & 23\end{array}\right]$
Q 24	If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n}$, then A^{\prime} is equal to (a) $[\mathrm{a} \mathrm{ji}] n \times m$ (b) $\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n}$ (c) $\left[\mathrm{a}_{\mathrm{ji}}\right] \mathrm{m} \times \mathrm{n}$ (d) $\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{m}$
$\begin{aligned} & \mathrm{Q} \\ & 25 \end{aligned}$	If A and B are symmetric matrices of same order, then $A B-B A$ is a (a) Skew symmetric matrix (b) Symmetric matrix (c) Zero matrix (d) Identity matrix
Q 26	If $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$, then $A B$ is (a) B (b) A (c) 0 (d) I
$\begin{aligned} & \mathrm{Q} \\ & 27 \end{aligned}$	A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called a diagonal matrix if $a_{i j}=0$ for (a) $i=j$ (b) $i<j$ (c) $i>j$ (d) $i \neq j$
Q 28	If $A=\left[\begin{array}{ccc}4 & 1 & 0 \\ 1 & -2 & 2\end{array}\right], B=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & x\end{array}\right], C=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $D=\left[\begin{array}{c}15+x \\ 1\end{array}\right]$ such that $(2 A-3 B) C=D$, then $x=$ (a) 3 (b) -4 (c) -6 (d) 6
Q 29	If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying $A A^{T}=9 I_{3}$, then the values of a and b respectively are (a) 1,2 (b) $-2,-1$ (c) $-1,2$ (d) $-2,1$

$\begin{aligned} & \mathrm{Q} \\ & 30 \end{aligned}$	If $\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ is sum of a symmetric matrix B and a skew symmetric matrix C, then C is (a) $\left[\begin{array}{cc}1 & -5 / 2 \\ 5 / 2 & 0\end{array}\right]$ (b) $\left[\begin{array}{cc}1 & -5 / 2 \\ 5 / 2 & 1\end{array}\right]$ (c) $\left[\begin{array}{cc}0 & -5 / 2 \\ 5 / 2 & 0\end{array}\right]$ (d) $\left[\begin{array}{cc}1 & -3 / 2 \\ 5 / 2 & 1\end{array}\right]$
$\begin{aligned} & \mathrm{Q} \\ & 31 \end{aligned}$	If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then A^{16} is equal to : (a) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ (b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ (d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\begin{aligned} & \mathrm{Q} \\ & 32 \end{aligned}$	If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$, then the values of k, a and b are respectively (a) $-6,-12,-18$ (b) $-6,4,9$ (c) $-6,-4,-9$ (d) $-6,12,18$
	CASE STUDY : 1 Two farmers Ram Kishan and Gurcharan Singh cultivate only three varities of rice namely X, Y and Z. The sale (in ₹) of these varities of rice by both the farmers in the month of September and October are given by the following matrices A and B September sales (in ₹) $\mathrm{A}=\left[\begin{array}{ccc} \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\ 10,000 & 20,000 & 30,000 \\ 50,000 & 30,000 & 10,000 \end{array}\right] \begin{gathered} \text { RURCHARAN SISHAN } \\ \text { GURH } \end{gathered}$

	October sales (in ₹) $\left.\mathrm{B}=\begin{array}{ccc} \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\ 5,000 & 10,000 & 6,000 \\ 20,000 & 10,000 & 10,000 \end{array}\right] \begin{gathered} \text { RAMKISHAN } \\ \text { GURCHARAN SINGH } \end{gathered}$ Based on the above information answer the following question:
Q 1	The combined sales in September and October for each farmer in each variety is (a) $\left[\begin{array}{ccc}5,000 & 10,000 & 24,000 \\ 30,000 & 20,000 & 0\end{array}\right]$ (b) $\left[\begin{array}{lll}15,000 & 30,000 & 36,000 \\ 70,000 & 40,000 & 20,000\end{array}\right]$ (c) $\left[\begin{array}{ccc}15,000 & 30,000 & 36,000 \\ 30,000 & 20,000 & 0\end{array}\right]$ (d) $\left[\begin{array}{ccc}5,000 & 10,000 & 24,000 \\ 70,000 & 40,000 & 20,000\end{array}\right]$
Q 2	The change in sales from September to October is $\begin{array}{lll} \text { (a) }\left[\begin{array}{ccc} 5,000 & 10,000 & 24,000 \\ 30,000 & 20,000 & 0 \end{array}\right] & \text { (b) }\left[\begin{array}{lll} 15,000 & 30,000 & 36,000 \\ 70,000 & 40,000 & 20,000 \end{array}\right] \\ \text { (c) }\left[\begin{array}{llll} 15,000 & 30,000 & 36,000 \\ 30,000 & 20,000 & 0 \end{array}\right] & \text { (d) }\left[\begin{array}{ccc} 5,000 & 10,000 & 24,000 \\ 70,000 & 40,000 & 20,000 \end{array}\right] \end{array}$
Q 3	If Ram Kishan receive 2 percent profit on gross rupees sales, the profit of Ram Kishan for each variety sold in October is (a) [$\left.\begin{array}{lll}200 & 200 & 120\end{array}\right]$ (b) [$\left.\begin{array}{lll}100 & 100 & 120\end{array}\right]$ (c) $\left[\begin{array}{llll}100 & 200 & 220\end{array}\right]$ (d) [$\left.\begin{array}{lll}100 & 200 & 120\end{array}\right]$
Q 4	If Gurcharan receive 3 percent profit on gross rupees sales, the profit of Gurcharan Singh for each variety sold in October is (a) $\left[\begin{array}{lll}600 & 600 & 300\end{array}\right]$ (b) $\left[\begin{array}{lll}600 & 600 & 600\end{array}\right]$ (c) $\left[\begin{array}{lll}600 & 300 & 300\end{array}\right]$ (d) $\left[\begin{array}{lll}300 & 300 & 300\end{array}\right]$
	CASE STUDY: 2 Three schools DPS , CVC and KVS decided to organize a fair for collecting money for helping the food victims They sold handmade fans, mats and plates from recycled material at a cost of ₹ 25 , ₹ 100 and ₹ 50 each respectively. The numbers of articles sold are given as

	If there were 8 children less, everyone would have got Rs 10 more.However, if there were 16 children more,everyone would have got Rs 10 less.Let the number of children be x and the amount distributed by Seema for one child be y (in ₹) Based on the information given above, answer the following questions.
Q 1	The equations in terms are (a) $5 x-4 y=40,5 x-8 y=-80$ (b) $5 x-4 y=40,5 x+8 y=80$ (c) $5 x-4 y=40,5 x+8 y=-80$ (d) $5 x+4 y=40,5 x-8 y=-80$
Q 2	Which of following matrix equations represent the information given above? (a) $\left[\begin{array}{ll}5 & 4 \\ 5 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$ (b) $\left[\begin{array}{ll}5 & -4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}40 \\ 80\end{array}\right]$ (c) $\left[\begin{array}{ll}5 & -4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$ (d) $\left[\begin{array}{cc}5 & 4 \\ 5 & -8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}40 \\ -80\end{array}\right]$
Q 3	The number of children who were given some money by Seema, is (a) 30 (b) 40 (c) 23 (d) 32
Q 4	How much amount (in ₹) is given to each child by Seema ? (a) 32 (b) 30 (c) 62 (d) 26
Q 5	How much amount Seema spends in distributing the money to all the students of the Orphanage?

(a) ₹609
(b) ₹ 960
(c) ₹906
(d) ₹ 690

ANSWERS

Q 1	A	Q 2	D	Q 3	B	Q 4	d
Q 5	C	Q 6	A	Q 7	D	Q 8	c
Q 9	C	Q 10	D	Q 11	A	Q 12	d
Q 13	a	Q 14	A	Q 15	b	Q 16	a
Q 17	a	Q 18	A	Q 19	b	Q 20	c
Q 21	b	Q 22	D	Q 23	a	Q 24	a
Q 25	a	Q 26	C	Q 27	d	Q 28	c
Q 29	b	Q 30	C	Q 31	d	Q 32	c

Case study 1 :
$1-\mathrm{b} \quad 2-\mathrm{a} \quad 3-\mathrm{d} \quad 4-\mathrm{c}$
Case study 2 :
$1-\mathrm{b} \quad 2-\mathrm{a} \quad 3-\mathrm{c} \quad 4-\mathrm{d} \quad 5-\mathrm{d}$
Case study 3 :
$1-\mathrm{a} \quad 2-\mathrm{c} \quad 3-\mathrm{d} \quad 4-\mathrm{b} \quad 5-\mathrm{b}$

