

TERM - 1 MATHS CLASS: XII CHAPTER 3: MATRICES WORKSHEET 3

- 1. A matrix is an ordered rectangular array of numbers or functions.
- 2. A matrix having m rows and n columns is called a matrix of order m X n
- 3. $[a_{ij}]_{m \times 1}$ is a column matrix.
- 4. $[a_{ij}]_{1 \times n}$ is a row matrix.
- 5. An m X n matrix is a square matrix if m = n
- 6. A = $[a_{ij}]_{m \times m}$ is a diagonal matrix if $a_{ij} = 0$ when $i \neq j$
- 7. A = [a_{ij}] $_{m \times m}$ is a scalar matrix if $a_{ij} = 0$ when $i \neq j$, $a_{ij} = k$ (k is some constant), When i=j
- 8. A = $[a_{ij}]_{m \times m}$ is an identity matrix if $a_{ij} = 1$ when i=j, $a_{ij} = 0$ when $i\neq j$
- 9. A = [a_{ij}] = [b_{ij}] = B if (i) A and B are of same order , (ii) $a_{ij} = b_{ij}$

For all possible values of i and j

- 10. $K A = k [a_{ij}]_{m \times n} = [k a_{ij}]_{m \times n}$
- 11. –A = (-1) A
- 12. A B = A + (-B)

13. A + B = B + A where A and B are of same order

- 14. (A + B) + C = A + (B + c) where A, B and C are of same order.
- 15. K(A + B) = kA + kB where A and B are of same order , k is

constant.

16. (k + m) A = k A + m A where ka dn m are constant.

17. (i)
$$A(BC) = (AB) C$$
 (ii) $A(B+C) = AB + AC$ (iii) $(A+B) C = AC + BC$

18. If $A = [a_{ij}]_{mX n}$ then $A' = [a_{ji}]_{nX m}$

19. (i)
$$(A')' = A$$
 (ii) $(kA)' = kA'$ (iii) $(A+B)' = A' + B'$

$$(iv) (AB)' = B' A'$$

- 20. A is symmetric matrix if A' = A
- 21. A is skew symmetric matrix if A' = -A
- 22. Any square matrix A can be represented as the sum of a symmetric

 $\frac{1}{2}$ (A + A)' and a skew symmetric matrix $\frac{1}{2}$ (A - A)'.

23. If A and B are two square matrix such that AB = BA = I, then B is the inverse of A and is denoted by A^{-1} and A is inverse of B.

24. If A and B are invertible matrices of same order , $(AB)^{-1} = B A^{-1}$

25. Inverse of a square matrix , if it exists , is unique.

MCQ

01	r21 r21									
QI	If A = $\begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$, B = $\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ X = $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, Y = $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$									
	AB + XY equals to									
	(a) [28] (b) [24] (c) [12] (d) [-28]									
Q2	The number of all possible matrices of order 3 X 3 will each entry 0 or 1									
	(a) 27 (b) 19 (c) 91 (d) 512									
02	(a) 27 (b) 18 (c) 81 (d) 512.									
Q3	If matrix A is both symmetric and skew symmetric , then									
	(a) A is diagonal matrix									
	(c) A is square matrix									
	(d) None of these									
Q 4	If $A = \begin{bmatrix} \alpha & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \end{bmatrix}$ then the value of a for which									
	1^{-1} -1^{-1} 1^{-1}									
	$A^2 = B$ is									
	(a) 1 (b) -1 (c) 4 (d) Not possible to find									
Q 5	C is a skew symmetric matrix of order n , X is a column matrix of order n X 1 then X' C X is a									
	(a) square matrix (b) identity matrix									
	(c) zero marix (d) None of these									
Q 6	A is a 3 X 4 matrix . A matrix B is such that A' B and B A' are defined									
	(a) 3 X 4 (b) 3 X 3 (c) 4 X 4 (d) 4 X 3									
Q 7	. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ $A^2 = \begin{bmatrix} x & y \\ y & x \end{bmatrix}$ then value of x and y are									
	(a) $x = a^2 + b^2 y = a^2 - b^2$									
	(b) $x = 2 a b y = a^2 + b^2$									

	(c) $x = a^2 + b^2 y = ab$ (d) $x = a^2 + b^2 y = 2 a b$					
Q 8	If $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ and $A^2 - k A - 5 I = 0$ then the value of k is					
	(a) 3 (b) 7 (c) 5 (d) 9					
Q 9	If A $\begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$ then A is					
	(a) $\begin{bmatrix} 2 & -1 & 1 \\ 0 & -3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & -2 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$					
	(c) $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$					
Q10	If A = $\begin{bmatrix} 1 & -2 & 2 \\ 4 & -3 & 0 \\ 5 & -1 & 6 \end{bmatrix}$ B = $\begin{bmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \\ 7 & -8 & 9 \end{bmatrix}$ then the element of second column and third row of AB is					
	(a) 1 (b) -44 (c) 30 (d) -33					
Q11	The diagonal elements of a skew symmetric matrix are (a) all zeros (b) are all equal to some scalar k not equal to zero (c) can be any number (d) None of these					
Q 12	If A = $\begin{bmatrix} 3 & x+1 \\ 2x+3 & x+2 \end{bmatrix}$ is a symmetric matrix , then x is					
	(a) 4 (b) 2 (c) -4 (d) -2					
Q 13	 Choose the correct statement: (a) Every identity matrix is a scalar matrix . (b) Every scalar matrix is a identity matrix. (c) Each diagonal matrix is a identity matrix. (d) A square matrix with all the elements 1 is an identity matrix. 					
	 (b) Every scalar matrix is a identity matrix. (c) Each diagonal matrix is a identity matrix. (d) A square matrix with all the elements 1 is an identity matrix. 					
Q14	(b) Every scalar matrix is a identity matrix. (c) Each diagonal matrix is a identity matrix. (d) A square matrix with all the elements 1 is an identity matrix. If A is square matrix such that $A^2 = A$, then $(I + A)^2 - 3A$ is					

Q15	The values of x , y and z , if $\begin{bmatrix} x + y + z \\ x + z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \end{bmatrix}$ are								
	$\begin{bmatrix} y+z & \\ 7 \end{bmatrix}$ (a) x = 2 y = 3 z = 4 (b) x = 2 y = 4 z = 3 (c) x = 3 y = 4 z = 2 (d) x = 3 y = 2 z = 4								
Q16	If matrix $A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ is the square root of the 2 X 2 identity matrix ,								
	then the relation a between a, b and c is								
	(a) $a^2 + bc - 1 = 0$ (b) $a^2 - bc - 1 = 0$ (c) $a^2 - bc - 1 = 0$								
	$(c) a + bc + 1 = 0 \qquad (a) - a + bc - 1 = 0$								
Q 17	Suppose 3 X 3 matrix A = $[aij]$, whose elements are given by A $_{ij} = i^2 - j^2$								
	Then a 32 is equal to								
	(a)5 (b)1 (c)2 (d)3								
Q 18	If $\begin{bmatrix} 1 & 2 \\ -2 & -b \end{bmatrix} + \begin{bmatrix} a & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 0 \end{bmatrix}$, then $a^2 + b^2$ is equal to								
	(a) 20 (b) 22 (c) 12 (d) 10								
Q 19	$X\begin{bmatrix}2\\3\end{bmatrix} + y\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}10\\5\end{bmatrix}$ then the value of x is								
	(a) 0 (b) 3 (c) 7 (d) 10								
Q 20	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}$ then A^2 is equal to								
	(a) 0 (b) - A (c) I (d) 2 A								
Q 21	If $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$ then the value of x is								
	(a) $5\sqrt{5}$ (b) $\pm 4\sqrt{3}$ (c) $\pm 3\sqrt{5}$ (d) $\pm 6\sqrt{5}$								
Q 22	If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the value of k so that								
	$A^2 = 8 \text{ A} + \text{k I} \text{is}$								
	(a) 4 (b) 5 (c) 6 (d) - 7								

If $X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ satisfy the equation AX 23 = B Then the matrix A is equal to (a) $\begin{bmatrix} -7 & 26 \\ 1 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & 26 \\ 4 & 17 \end{bmatrix}$ (c) $\begin{bmatrix} -7 & -4 \\ 26 & 13 \end{bmatrix}$ (d) $\begin{bmatrix} -7 & 26 \\ -6 & 23 \end{bmatrix}$ If $A = [a_{ii}]_{m \times n}$, then A' is equal to Q 24 (a) $[a_{ji}]_{n \times m}$ (b) $[a_{ij}]_{m \times n}$ (c) $[a_{ji}]_{m \times n}$ (d) $[a_{ij}]_{n \times m}$ If A and B are symmetric matrices of same order , then AB – BA is a Q 25 Skew symmetric matrix (a) (b) Symmetric matrix (C) Zero matrix Identity matrix (d) If A = $\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$ and B = $\begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$, then AB is Q 26 (a) В (b) A (c) O (d) I A square matrix $A = [a_{ij}]_n x_n$ is called a diagonal matrix if $a_{ij} = 0$ for Q 27 i=j (b) i<j (c) i>j (d) i≠j (a) Q If $A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & -2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 1 & x \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $D = \begin{bmatrix} 15 + x \\ 1 \end{bmatrix}$ such 28 that (2 A - 3 B) C = D, then x = (a) 3 (b) -4 (c) -6 (d) 6 If A = $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying A A^T = 9 I₃, then the values Q 29 of a and b respectively are (a) 1, 2 (b) -2 , -1 (c) -1 , 2 (d) -2 , 1

Q 30	If $\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ is sum of a symmetric matrix B and a skew symmetric matrix C, then C is						
	(a) $\begin{bmatrix} 1 & -5/2 \\ 5/2 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -5/2 \\ 5/2 & 1 \end{bmatrix}$						
	(c) $\begin{bmatrix} 0 & -5/2 \\ 5/2 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -3/2 \\ 5/2 & 1 \end{bmatrix}$						
Q 31	If A = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then A^{16} is equal to :						
	(a) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$						
Q 32	If A = $\begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and k A = $\begin{bmatrix} 0 & 3 & a \\ 2 & b & 24 \end{bmatrix}$, then the values of k , a and b are respectively						
	(a) -6,-12,-18 (b) -6,4,9 (c) -6,-4,-9 (d) -6,12,18						
	CASE STUDY: 1						
	Two farmers Ram Kishan and Gurcharan Singh cultivate only three varities of rice namely X , Y and Z . The sale (in \gtrless) of these varities of rice by both the farmers in the month of September and October are given by the following matrices A and B						
	September sales (in ₹)						
	X Y Z						
	A = 10,000 20,000 30,000 RAM KISHAN 50,000 30,000 10,000 GURCHARAN SINGH						

	October sales (in ₹)
	X Y Z
	$B = \begin{bmatrix} 5,000 & 10,000 & 6,000 & RAMKISHAN \\ 20,000 & 10,000 & 10,000 & GURCHARAN SINGH \end{bmatrix}$
	Based on the above information answer the following question:
Q 1	The combined sales in September and October for each farmer in each variety is
	(a) $\begin{bmatrix} 5,000 & 10,000 & 24,000 \\ 30,000 & 20,000 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 15,000 & 30,000 & 36,000 \\ 70,000 & 40,000 & 20,000 \end{bmatrix}$
	$(c) \begin{bmatrix} 15,000 & 30,000 & 36,000 \\ 30,000 & 20,000 & 0 \end{bmatrix}$ $(d) \begin{bmatrix} 5,000 & 10,000 & 24,000 \\ 70,000 & 40,000 & 20,000 \end{bmatrix}$
Q 2	The change in sales from September to October is
	(a) $\begin{bmatrix} 5,000 & 10,000 & 24,000 \\ 30,000 & 20,000 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 15,000 & 30,000 & 36,000 \\ 70,000 & 40,000 & 20,000 \end{bmatrix}$
	$(c) \begin{bmatrix} 15,000 & 30,000 & 36,000 \\ 30,000 & 20,000 & 0 \end{bmatrix}$ $(d) \begin{bmatrix} 5,000 & 10,000 & 24,000 \\ 70,000 & 40,000 & 20,000 \end{bmatrix}$
Q 3	If Ram Kishan receive 2 percent profit on gross rupees sales, the profit of Ram Kishan for each variety sold in October is
	(a) [200 200 120] (b) [100 100 120]
	(c) [100 200 220] (d) [100 200 120]
Q 4	If Gurcharan receive 3 percent profit on gross rupees sales , the profit of Gurcharan Singh for each variety sold in October is
	(a)[600 600 300] (b)[600 600 600]
	(c)[600 300 300] (d)[300 300 300]
	CASE STUDY : 2
	Three schools DPS , CVC and KVS decided to organize a fair for collecting money for helping the food victims
	They sold handmade fans , mats and plates from recycled material at a cost of $R \ge 25$, $R \ge 100$ and $R \ge 50$ each respectively. The numbers of articles sold are given as

	School / Article Handmade fans	DPS									
	Handmade fans			KVS							
		40	25	35							
	Mats	50	40	50							
	Plates	20	30	40							
	Based on the information given above , answer the following questions.										
Q 1	What is the total	money (in ₹) co	ollected by the s	school DPS?							
	(a) 700	(b) 7000	(c) 612	25 (d) 7	7875						
Q 2	What is the total amount of money (in ₹) collected by schools CVC and KVS?										
	(a) 14000	(b) 15725	(c) 21000	(d) 1312	5						
Q 3	What is the total amount of money (in ₹) collected by all three schools DPS , CVC and KVS ?										
	(a) 15775	(b) 14000) (c) 21000	(d) 1712	5						
Q 4	If the number of handmade fans and plates are interchanged for all the schools , then what is the total money (in \mathfrak{F}) collected by all the schools?										
	(a) 18000	(b) 6750	(c) 5000	(d) 2125	0						
Q 5	How many articles	s (in total) are se	old by three sch	ools?							
	(a) 230	(b) 130	(c) 430	(d) 330							
	CASE STUDY : 3 On her birthday , Seema decided to donate some money to children of an orphanage home.										

	If there were 8 children less , everyone would have got Rs 10 more. However , if there were 16 children more, everyone would have got Rs 10 less. Let the number of children be x and the amount distributed by Seema for one child be y (in ₹)							
0.1	Based on the information given above , answer the following questions.							
QI	The equations in terms are							
	(a) $5x - 4y = 40$, $5x - 8y = -80$ (b) $5x - 4y = 40$, $5x + 8y = 80$							
	(c) $5x - 4y = 40$, $5x + 8y = -80$ (d) $5x + 4y = 40$, $5x - 8y = -80$							
Q 2	Which of following matrix equations represent the information given above?							
	(a) $\begin{bmatrix} 5 & 4 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$							
	(b) $\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ 80 \end{bmatrix}$							
	(c) $\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$							
	(d) $\begin{bmatrix} 5 & 4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$							
Q 3	The number of children who were given some money by Seema, is							
	(a) 30 (b) 40 (c) 23 (d) 32							
Q 4	How much amount (in \mathbf{R}) is given to each child by Seema ?							
	(a) 32 (b) 30 (c) 62 (d) 26							
Q 5	How much amount Seema spends in distributing the money to all the students of the Orphanage?							

(a)	₹609	(b) ₹ 960	(c) ₹906	(d) ₹ 690

Q 1	A	Q 2	D	Q 3	В	Q 4	d	
Q 5	С	Q 6	A	Q 7	D	Q 8	c	
Q 9	С	Q 10	D	Q 11	A	Q 12	d	
Q 13	а	Q 14	A	Q 15	b	Q 16	а	
Q 17	а	Q 18	A	Q 19	b	Q 20	С	
Q 21	b	Q 22	D	Q 23	а	Q 24	а	
Q 25	а	Q 26	С	Q 27	d	Q 28	С	
Q 29	b	Q 30	C	Q 31	d	Q 32	С	

ANSWERS

Case study 1:

1-b 2-a 3-d 4-c

Case study 2:

1-b 2-a 3-c 4-d 5-d

Case study 3 :

1-a 2-c 3-d 4-b 5-b