

TERM - 1 MATH CLASS: XII CHAPTER 4: DETERMINANTS WORKSHEET 4

Q1	If the area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq units. Then the value of k will be
	(a)9 (b)3 (c)-9
	(d)6
Q2	If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, then value of x is
	(b) ± 3 (c) ± 6 (d) 6
Q3	If $A = \begin{vmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{vmatrix}$, then A^{-1} exists, if
	(a) $\lambda = 2$
	(b) $\lambda \neq 2$
	(c) $\lambda \neq -2$
	(d) None of these
Q4	If A and B are matrices of order 3 and $ A = 5$, and $ B = 3$, then $ 3AB $ is equal to
	(a) 45
	(b) 405
	(c) 135
	(d) None of these

Q 5	If there are two values of 'a' which makes determinant,
	$\begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86$, then sum of these numbers is
	(a) 4
	(b) -5
	(c) -4
	(d) 9
Q 6	If A is a square matrix of order 3, with $ A = 9$, then the value of
	2 . <i>adj A</i>
	(a) 648
	(b) 54
	(c) 72
	(d) 108
Q 7	If A is a square matrix of order 2 and $ A \;$,then value of $\; 2AA' \;$ is
	(a)64
	(b) 8
	(c) 16
	(d) 32
Q 8	
	If matrix $\begin{vmatrix} x+4 & -1 & 2 \\ 3x+1 & 2 & -1 \end{vmatrix}$ is a singular matrix, then the value of x
	is
	$(3)^{-3}$
	(a) 16
	(b) $\frac{3}{16}$
	(c) $\frac{4}{12}$
	8
	(d) $\frac{10}{10}$

Q 9	For matrix $A = \begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$ is equal to:
	(a) $\begin{bmatrix} -2 & -5 \\ 11 & 7 \end{bmatrix}$
	$(b)\begin{bmatrix}7 & 5\\11 & 2\end{bmatrix}$
	$ (c) \begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix} $
	$ (d) \begin{bmatrix} 7 & -5\\ 11 & 2 \end{bmatrix} $
Q10	Given that $A = [a_{ij}]$ is a square matrix of order 3×3 and $ A = -7$, then
	the value of $\sum_{i=1}^{3} a_{i1} A_{i1}$, where A_{ij} denotes the cofactor of element
	a _{ij} is:
	(a)7
	(b)-7
	(c) 0
	(d)49
Q11	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:
	(a) 4
	(b) 8
	(c) 64
	(d) 16
Q12	Let $A = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix}$, where $0 \le \theta \le 2\pi$. Then
	(a) Det(A) =0
	(b) Det(A) ∈ (2, ∞)

	(c) $Det(A) \in (2, 4)$
	(d) Det(A) ∈ [2, 4]
Q13	For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, $A^2 + aA + bI = 0$, then the values of
	numbers a and b is
	(a) a = 3, b = 2
	(b) a = 4, b =3
	(c) a = -4, b = 1
	(d) a = -3, b = 2
Q14	If A is an invertible matrix of order 3 and $ A =5$, then value $ adjA $
	is
	(a) 15
	(b) 45
	(c) 35
	(d) 25
Q15	If A is a singular matrix, then A (adj A) is
	(a) Null matrix
	(b) Scalar matrix
	(c) Identity matrix
	(d) None of these
Q16	If A is 3×3 square marix such that A (adj A) = 2I, where I is the
	identity matrix, The value of $ adj A $ is
	(a) 4
	(b) -4
	(c) 0
	(d) none of these

Q17	If the value of a third order determinant is 12, then the value of the
	determinant formed by replacing each element by its cofactors will be
	(a) 12
	(b) 144
	(c) -12
	(d) 13
Q18	If A is a square matrix of order 3 \times 3 such that $ A = 2$, then the value
	of $ adj(adj A) $ is
	(a)-16
	(b) 16
	(c) 0
	(d) 2
Q19	If A is a square matrix of order 3 \times 3 such that $ A = 4$, then the value
	of $ A (adj A) $ is
	(a) 4
	(b) 16
	(c) 12
	(d) 48
Q20	If A is a square symmetric matrix of order 3 then the value of $ A $ is
	(a)0
	(b)3
	(c)9
	(d)27
Q21	If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \end{bmatrix}$, then (adj A) is equal to
	(a) a ²⁷
	(b) a ⁶
	(c) a ⁹
	(d) a ³

Q22	Let $A = \begin{bmatrix} 200 & 50 \\ 10 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 50 & 40 \\ 2 & 3 \end{bmatrix}$, then $ AB $ is equal to
	(a) 460
	(b) 2000
	(c) 3000
	(d)-7000
Q23	The value of determinant $\begin{bmatrix} cos20^{\circ} & sin20^{\circ} \\ sin70^{\circ} & cos70^{\circ} \end{bmatrix}$ is
	(a) 1
	(b)-1
	(c) 0
	(d) $\frac{1}{2}$
Q24	If A is a skew symmetric matrix of odd order n, then
	A = 0
	(b) $ A = 1$
	(c) $ A = -1$
025	(d) None of these
Q25	The minors of the diagonal elements of the determinant $\begin{vmatrix} 5 & -1 & 2 \\ 4 & -1 & 3 \end{vmatrix}$
	are 2 0 -1
	(a) 1, 7, 1
	(b) -1,7,1
	(c) 1, -7,1
	(d) None of these
Q26	If $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$, then the cofactor A ₂₁ is

	(a) – (hc + fg)
	(b) fg - hc
	(c) fg + hc
	(d) hc - fg
Q27	The matrix is $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$ is
	(a) Singular matrix
	(b) Non - singular
	(c) Symmetric matrix
	(d) Skew symmetric matrix
Q28	The adjoint of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is
	(a) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & -2 \\ -3 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -2 \\ 1 & -3 \end{bmatrix}$
Q29	If $A = \begin{bmatrix} 1 & 4 \\ 3 & 15 \end{bmatrix}$, then $ A^{-1} $ is equal to (a) $\frac{-1}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{4}{3}$

30	If $A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$, then find $ adj (adj(A) $
	(a)-1
	(b)0
	(c)1
	(d)None of these
	Case Study Based Question
	Two schools SWAMIVIVEKANANDA and SGRR wants to award their selected students on the basis of values of sincerity, truthfulness and helpfulness. SWAMIVIVEKANANDA wants award $\exists x each$, $\exists y each$ and $\exists z each$ for three respective values to 3, 2 and 1 students respectively with a total award money of $\exists 1600$. SGRR wants to spend $\exists 2300$ to award its 4,1,3 students on respective values (by giving the same amount to the three values as before). The total amount of the award for one prize on each is $\exists 900$.
	Based on the given information, answer the following questions :
Q31	The value $x + y + z$ is
	(a 800
	(b)900
	(c1000
	(d)12000
Q32	The value of $4x + y + z$ is
	(a) 1600
	(b) 1200
	(c) 900
	(d) 2300
Q33	The value of y is
	(a) 200
	(b) 250
	(c) 300

	(d) 350
Q34	The value of 2x + 3y is
	(a) 1000
	(b) 1100
	(c) 1200
	(d) 1300
Q35	Y – x is equal to
	(a) 100
	(b) 200
	(c) 300
	(d) 400
	Case Study Based question
	A factory produces three items every day. Their production on certain day is 45 Tons. It is found that the production of third item exceeds the production of first item by 8 tons while the total production of first and third item is twice the production of second item.
	Based on the given information, answer the following questions:
Q36	If x, y, z respectively denotes the quantity (in tons) of first, second and third item produced, then which of the following is true?
	(a) $x + y + z = 45$ (b) $x + 8 = z$ (c) $x - 2y + z = 0$ (d)All of these
Q37	If $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 2 & 2 & 2 \\ 3 & 0 & -3 \\ 1 & -2 & 1 \end{bmatrix}$
	Then the inverse of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{bmatrix}$ is

	$(a) \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$
	$(b)\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{-1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$
	$(c) \cdot \begin{bmatrix} \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$
	D .None of these
Q38	x: y: z is equal to
	(a)12: 13 : 20 (b)11: 15: 19 (c)15: 19: 11 (d)13: 12: 20
Q39	Which of the following is not true?
	(a) $ adj A = A ^{n-1}$, where n is order of the matrix A
	(b) $(A')^{-1} = (A^{-1})'$
	(c)A is skew symmetric matrix of odd then $ A =0$

	(d) All above
Q40	If a matrix B is both symmetric and skew symmetric, then B is equal to (a)1 (b-1 (c) 0 (d)None of these
	Case Study Based question
	Mahesh wants to donate a rectangular plot of land for a school of her village. When she was asked by construction agency to give dimensions of the plot, she said that if its length(x) is decreased by 50m and breadth(y) is increased by 50m, then its area will remain same, but if length is decreased by 10m and breadth is decreased by 20m, then its area will be decrease by 5300 m^2 .
	Based on above information answer the following questions:
Q41	The equations in terms of x and y are
	(a)x-y=50, 2x - y =550
	(b)x - y = 100, $2x + y = 550$
	(c) $x + y = 50$, $2x + y = 550$
	(d) $x + y = 50$, $2x - y = 550$
Q42	Which of the following matrix equation is represented by the given information?
	$(a)\begin{bmatrix}1 & -1\\2 & 1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}50\\550\end{bmatrix}$
	$(b)\begin{bmatrix}1&1\\2&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}50\\550\end{bmatrix}$
	$(c)\begin{bmatrix}1&1\\2&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}-50\\-550\end{bmatrix}$
	$(d)\begin{bmatrix}1 & 1\\2 & -1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}50\\550\end{bmatrix}$

Q43	The value of x (length of rectangular plot is
	(a)150m
	(b)400m
	(c) 200m
	(d)320m
Q44	The value of y (breadth of rectangular plot) is
	(a)150m
	(b)200m
	(c) 430m
	(d)350m
Q45	How much is the area of rectangular field?
	(a)60000sq. m
	(b)30000sq.m
	(c) 40000sq.m
	(d) 20000sq.m
	ANSWERS
1.b	2.c 3.d 4.c 5.c 6.d 7.a 8.a 9.c 10.b 11.b 12.d 13.c 14.d
15.a	16.a 17.b 18.b 19.a 20.a 21.b 22.d 23.c 24.a 25.
26.b	27.b 28.a 29.b 30.c 31.b 32.D 33.C 34.d 35.a 36.d
37.c	38. B 39.d 40.c 41.b 42.a 43.c 44.a 45.b