TERM - 1 MATHS
CLASS: XII
CHAPTER : APPLICATION OF DERIVATIVES
WORKSHEET: 6

Q1	The function $f(x)$, defined as $f(x)=4-3 x+3 x^{2}-x^{3}$ is: (a) Decreasing on R (b) Increasing on R (c) strictly increasing on R (d) Strictly decreasing on R
Q2	The interval in which function $y=x^{2} e^{-x}$ is increasing is: (a) $(-\infty, \infty)$ (b) $(-2,0)$ (c) $(2, \infty)$ (d) $(0,2)$
Q3	The function $f(x)=\cos x-\sin x$ has maximum or minimum value at $x=$ (a) $\frac{\pi}{4}$ (b) $\frac{3 \pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$
Q4	The interval in which the function $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$ is strictly increasing is: (a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (c) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ (d) $\left(0, \frac{\pi}{2}\right)$
Q 5	The function $f(x)=a x+b$ is strictly decreasing for all $x \in R$ iff: (a) $a=0$ (b) $a<0$

	(c) $a>0$ (d) none of these
Q 6	The function $f(x)=x^{x}$ is decreasing in the interval:. (a) $(0, e)$ (b) $(0,1 / \mathrm{e})$ (c) $(0,1)$ (d) none of these
Q 7	The function $f(x)=\left[x(x-3)^{2}\right]$ is increasing in: (a) $(0, \infty)$ (b) $(-\infty, 0)$ (c) $(1,3)$ (d) $(0,3 / 2) \cup(3, \infty)$
Q 8	The function $f(x)=\tan x-4 x$ is strictly decreasing on the interval: (a) $\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$ (b) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ (C) $\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$ (d) $\left(\frac{\pi}{2}, \pi\right)$
Q 9	Tangents to the curve $y=x^{3}+3 x$ at $x=1$ and $x=-1$ are: (a) parallel (b) intersecting obliquely but not at an angle of 45° (c) intersecting at right angle (d) intersecting at an angle of 60°
Q10	The equation of normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to the line $x+3 y=8$ is: (a) $x+3 y=8$ (b) $x+3 y+8=0$ (c) $x+3 y=0$ (d) $x+3 y \pm 8=0$
Q11	The point on curve $y=(x-3)^{2}$, where the tangent is parallel to the chord joining $(3,0)$ and $(4,1)$ is: (a) $(-7 / 2,1 / 4)$ (b) $(5 / 2,1 / 4)$

	(c) $(-5 / 2,1 / 4)$ (d) $(7 / 2,1 / 4)$
Q 12	The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point (a) $(1,2)$ (b) $(2,1)$ (c) $(1,-2)$ (d) $(-1,2)$
Q13	The point on the curve $y^{2}=x$ where tangent makes an angle of $\frac{\pi}{4}$ with x axis is: (a) $(1 / 2,1 / 4)$ (b) $(1 / 4,1 / 2)$ (c) $(4,2)$ (d) $(1,1)$
Q14	The slope of the normal to the curve: $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta), y=$ $a(\sin \theta-\theta \cos \theta)$ at any point θ is (a) $\cot \theta$ (b) $-\tan \theta$ (c) $-\cot \theta$ (d) $\tan \theta$
Q15	.The equation of all lines having slope 2 which are tangent to the curve $y=\frac{1}{x-3}, x \neq 3$ is (a) $y=2$ (b) $y=2 x$ (c) $y=2 x+3$ (d) none of these
Q16	If $y=4 x-5$ is a tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$ then (a) $p=-2, q=-7$ (b) $p=-2, q=7$ (c) $p=2, q=-7$ (d) $p=2, q=7$
Q 17	The angle of intersection of curves $y=x^{2}$ and $6 y=7-x^{3}$ at $(1,1)$ is: (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$

\(\left.$$
\begin{array}{|l|l|}\hline & \text { (d) } \pi\end{array}
$$ \left\lvert\, \begin{array}{ll}\hline Qhe greatest value of f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3} on[0,1] is \\
(a) 1 \\
(b) 2 \\
(c) 3 \\

(d) 1 / 3\end{array}\right.\right]\)| Twenty meters of wire is available for fencing off a flower bed in the |
| :--- |
| form of a circular sector. Then the maximum area in sq. meters of the |
| flower bed is: |
| (a) 25 |
| (b) 30 |
| (c) 12.5 |
| (d) 10 |

	(a) 3 (b) 4 (c) 5 (d) 7
Q 24	If $\mathrm{y}=\frac{a x-b}{(x-1)(x-4)}$ has a turning point $\mathrm{P}(2,-1)$, then the value of a and b respectively are (a) 1,2 (b) 2,1 (c) 0,1 (d) 1,0
Q 25	The height of cylinder of maximum volume that can be inscribed in a sphere of radius a is: (a) $2 a / 3$ (b) $2 a / \sqrt{3}$ (c) $a / 3$ (d) $a / 5$
Q 26	The maximum value of $\left(\frac{1}{x}\right)^{x}$ is (a) e (b) e^{e} (c) $1 / \mathrm{e}^{\mathrm{e}}$ (d) $\left(\frac{1}{e}\right)^{\frac{1}{e}}$
Q 27	If a point on the hypotenuse of a triangle is at a distance a and b from the sides of a triangle, then the minimum length of hypotenuse is (a) $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)$ (b) $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{3 / 2}$ (c) $\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^{3 / 2}$ (d)none of these
Q 28	If a cone of maximum volume is inscribed in a given sphere, then the ratio of height of the cone to diameter of sphere is (a) $3 / 4$ (b) $1 / 3$ (c) $1 / 4$ (d) $2 / 3$

Q 29	If $f(x)=a \log x+b x^{2}+x$ has its extremum values at $x=-1$ and $x=2$ then (a) $a=-1 / 2, b=2$ (b) $a=1, b=-1$ (c) $a=-1, b=1$ (d) $a=2, b=-1 / 2$
Q 30	Semi vertical angle of a right circular cone of given total surface area and maximum volume is (a) $\cos ^{-1} \frac{2}{3}$ (b) $\sin ^{-1} \frac{1}{3}$ (c) $\tan ^{-1} \sqrt{2}$ (d) $\tan ^{-1} \frac{1}{3}$
	CASE STUDY : 1 The front gate of a building is in the shape of a trapezium as shown below. Its three sides other than base are 10 m each. The height of the gate is h meter. On the basis of this information and figure given below, answer the following questions:
Q 1	The area A of the gate expressed as a function of x is (a) $(10+x) \sqrt{ }\left(100+x^{2}\right)$ (b) $(10-x) \sqrt{ }\left(100+x^{2}\right)$ (c) $(10+x) \sqrt{ }\left(100-x^{2}\right)$ (d) $(10-x) \sqrt{\left(100-x^{2}\right)}$
Q 2	The value of $\frac{d A}{d x}$ is (a) $\frac{2 x^{2}+10 x-100}{\sqrt{100-x^{2}}}$

	(b) $\frac{2 x^{2}-10 x-100}{\sqrt{100-x^{2}}}$ (c) $\frac{2 x^{2}+10 x+100}{\sqrt{100-x^{2}}}$ (d) $\frac{-2 x^{2}-10 x+100}{\sqrt{100-x^{2}}}$
Q 3	Value of x , for which $\frac{d A}{d x}=0$ (a) 10 (b) 5 (c) 20 (d) 15
Q 4	If at the value of x, where $\frac{d A}{d x}=0$, area of trapezium is maximum, then maximum area of trapezium is given by: (a) $25 \sqrt{3}$ sq. m (b) $100 \sqrt{3}$ sq. m (c) $75 \sqrt{3}$ sq. m (d) $50 \sqrt{3}$ sq. m
Q 5	If area of trapezium is maximum, then value of $\frac{d^{2} y}{d x^{2}}$ is: (a) Positive (b) Negative (c) Zero (d) None of these
	CASE STUDY : 2 A company which is located in Surat, Gujarat is manufacturing toys for the kids. If $P(x)=-5 x^{2}+125 x+37500$ is the total profit function of a company, where x is the production of the company.

	Based on above information, answer the following questions:
Q 1	What will be the production when the profit is maximum? a. 37500 b. 12.5 C. -12.5 d. -37500
Q 2	What will be the maximum profit? a. Rs $38,28,125$ b. Rs 38281.25 c. Rs 39,000 d. None
Q 3	Check in which interval the profit is strictly increasing . a. $(12.5, \infty)$ b. for all real numbers c. for all positive real numbers d. $(0,12.5)$
Q 4	When the production is 2 units what will be the profit of the company? a. 37,500 b. 37,730 c. 37,770 d. None
Q 5	What will be production of the company when the profit is Rs 38250? a. 15

	b. 30 c. 2 d. data is not sufficient to find
	CASE STUDY : 3 A student of class XII wants to construct a rectangular tank for his house that can hold 80 cubic feet of water. The top of the tank is open. The width of tank will be 5 ft but length and heights are variables. Building the tank cost Rs 20 per sq. foot for the base and Rs. 10 per square foot for the side.

Q 4 Value of h at which $c(h)$ is minimum is
(a) 6
(b) 6,7
(c) 4
(d) 5

Q 5 The cost of least expensive tank is
(a) 1120
(b) 1220
(c) 1100
(d) 1020

ANSWER KEY

1	a
2	a
3	a
4	b
5	b
6	b
7	d
8	a
9	a
10	d
11	d
12	a
13	b
14	c
15	d
16	c

17	a
18	b
19	a
20	C
21	b
22	b
23	b
24	d
25	b
26	C
27	b
28	d
29	C
30	b
	CASE STUDY 1
1	C
2	d
3	b
4	C
5	b
	CASE STUDY 2
1	b
2	b
3	a
4	b

5	a
	CASE STUDY 3
1	a
2	d
3	b
4	c
5	a

