Chapter- Triangles

1. In $\triangle \mathrm{ABC}$ if $\mathrm{A}=45^{\circ}, \mathrm{B}=70^{\circ}$ then shortest side is
a) AB
b) BC
c) CA
d) None of these
2. $A B C$ is an isosceles triangle such that $A B=B C$ and $A D$ is the median to the base $B C$. Then, $B A D$ is equal to

a) 55°
b) 70°
c) 35°
d) 110°
3. In the given figure, if $\mathrm{AE} \| \mathrm{DC}$ and $\mathrm{AB}=\mathrm{AC}$, the value of ABD is

a) 70°
b) 110°
c) 120°
d) 130°
4. In the given figure, if $A C$ is bisector of $B A D$ such that $A B=3 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, then $C D$ is equal to

a) 2 cm
b) 3 cm
c) 4 cm
d) 5 cm
5. In the given figure, ABC is an isosceles triangle whose side AC is produced to E . through C, CD is drawn parallel to BA. The value of x is

a) 52°
b) 76°
c) 156°
d) 104°
6. Is it possible to construct a triangle with lengths of its sides as $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm ? Give reason for your answer.
7. In the given figure, if $m \| n$ and $a: b=2: 3$, then what will be the measure of x ?

8. In quadrilateral $\mathrm{ABCD}, \mathrm{AC}=\mathrm{AD}$ and AB bisects A . show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$

9. The statement "An exterior angle of a triangle is less than either of its interior opposite angles", is true or false?
10. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB , respectively. Show that these altitudes are equal.

11. In the given figure, if $\mathrm{PQ}>\mathrm{PR}$ and QS, RS are the bisectors of Q, R respectively. Then prove that SQ > SR.

12. In the given figure, $A B=D E, B C=E F$ and median $A P=$ median $D Q$. Prove that $\llcorner B=\llcorner E$

13. In $P Q R$, if $P=100^{\circ}, P M$ bisects P and $P M$ is perpendicular $Q R$, then find Q.
14. In $\mathrm{ABC} \cong P Q R$ and $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{~B}=90^{\circ}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}$ amd $\mathrm{Q}=90^{\circ}$. Then write the information which is left out.
15. In the given figure, $\mathrm{AE} \| \mathrm{BD}$ and $\mathrm{CA} \| \mathrm{DE}$. Find the measures of x and y .

16. In the given figure, $\mathrm{X}=62^{\circ}$ and $\mathrm{XYZ}=54^{\circ}$. If YO and ZO are the bisectors of XYZ and XZY , respectively of XYZ . Then find the value of OZY and YOZ.

17. It is given figure, ABCD is a square and EF is parallel to diagonal BD and $\mathrm{EM}=\mathrm{FM}$. Prove that

a) $\mathrm{DF}=\mathrm{BE}$
b) AM bisects BAD.
18. In the given figure, $\mathrm{RS}=\mathrm{QT}$ and $\mathrm{QS}=\mathrm{RT}$. Prove that $\mathrm{PQ}=\mathrm{PR}$

19. $A B C$ is a triangle in which $B=2 C$. D is a point on side $B C$ such that $A D$ bisects $B A C$ and $A B=C D$. Prove that $\mathrm{BAC}=72^{\circ}$
20. In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that $\mathrm{OB}=\mathrm{OD}$. If $\mathrm{AD}=\mathrm{BC}$, then show that a$) \operatorname{ar}(\mathrm{AOD})(=\operatorname{ar}(\mathrm{BOC}) \quad \mathrm{b}) \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ABC}) \quad$ c) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.

21. Two triangles having equal areas and having one side of the triangle equal to one side of the other have their corresponding altitudes equal. Prove that altitudes of both triangles are equal.
22. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. D, E and F are the mid-points of the sides BC, AC and $A B$, respectively. Prove that $D E=D F$.
23. ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=\mathrm{BC}$. AE intersects CD at F . if $\operatorname{ar}(\mathrm{DFB})=3 \mathrm{~cm}^{2}$, then find the area of the parallelogram ABCD .

